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We consider a problem faced by an airline that operates a number of parallel flights to transport cargo between a particular
origin to destination pair. The airline can sell its cargo capacity either through allotment contracts or on the spot market,
where customers exhibit choice behavior between different flights. The goal is to simultaneously select allotment contracts
among available bids and find a booking control policy for the spot market to maximize the sum of the profit from the
allotments and the total expected profit from the spot market. We formulate the booking control problem on the spot
market as a dynamic program and construct approximations to its value functions, which can be used to estimate the total
expected profit from the spot market. We show that our value function approximations provide upper bounds on the optimal
total expected profit from the spot market, and they allow us to solve the allotment selection problem through a sequence
of linear mixed-integer programs with a special structure. Furthermore, the value function approximations are useful for
constructing a booking control policy for the spot market with desirable monotonic properties. Computational experiments
show that the proposed approach can be scaled to realistic problems and provides well-performing allotment allocation and
booking control decisions.
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1. Introduction

A significant portion of revenues in the airline indus-
try comes from transporting cargo. Indeed, the Interna-
tional Air Transport Association (IATA) estimates that 2008
system-wide global revenues from cargo were 64 billion
versus 439 billion from passengers; see IATA (2009). Many
airlines face the problem of controlling cargo bookings
for both dedicated cargo and mixed passenger/cargo air-
craft. For a large airline, management of passenger capacity
shares many features with management of cargo capacity.
Given a limited amount of cargo capacity, an airline, typi-
cally called a carrier, decides whether to commit to a cur-
rent booking request or to reserve capacity for a possible
future booking request with potentially higher revenue. This
basic trade-off is accompanied by some other concerns, such
as the existing overbooking policies that deal with the fact
that not all the booked requests show up at the departure
time, and the allotment contracts that reserve portions of
cargo capacity to numerous clients. However, while passen-
ger capacity management has received significant attention
in the revenue management literature, there is nowhere near
a comparable effort on cargo revenue management, despite
its evident importance as a potential source of improvement
in revenues.

In this paper, we consider an airline that operates a num-
ber of parallel flights to transport cargo between a particular
origin—destination pair. The airline faces two problems that
interact tightly with each other. The first problem is to
determine what contracts, if any, should be signed with
potential allotment customers. The allotment contracts typi-
cally fix the shipping rate and the amount of reserved capac-
ity, and they have a duration of at least a few months so
that many departures are scheduled to occur during the
contract period. The customers who opt for such contracts
are usually intermediaries called forwarders, who provide
the end customers with a door-to-door service by handling
and transporting cargo packages. The airline periodically
collects bids from forwarders for allotment contracts and
simultaneously decides which bids are granted, making this
problem akin to combinatorial auctions. After setting up
the allotment contracts, the airline faces the second prob-
lem that determines which booking requests to accept on
the spot market. Because the parallel flights are similar from
a customer standpoint, spot market demands exhibit con-
sumer choice behavior. The two problems interact because
allotment and spot market cargo eventually share the same
capacity, and the airline is penalized if this capacity is
oversold.
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There has been extensive research on controlling passen-
ger bookings, but relatively little attention has been directed
to cargo bookings. Although the trade-offs involved in
controlling passenger and cargo bookings are similar, the
methods for controlling passenger bookings do not imme-
diately apply to cargo bookings, for a number of reasons.
To begin with, passenger capacity is counted in the num-
ber of seats, whereas cargo capacity is counted in units of
both volume and weight. In certain applications that involve
wide-body aircraft, it might even be necessary to use body
position as the third capacity dimension. Furthermore, the
capacity requirements of a booked cargo request are usu-
ally not known with certainty until loading at the departure
time. Thus, the total capacity required by the booked cargo
requests is random and this creates complications when
formulating the booking control problem as a dynamic pro-
gram. Finally, the possibility of allotments introduces chal-
lenges. The airline can sell a portion of its cargo capacity as
allotments at relatively low prices and hedge the random-
ness of the spot market. However, the amount of capacity
utilized, eventually, by the allotment contracts is random,
which implies that the amount of capacity available for the
spot market demand is also random.

In general, the booking control problem is difficult by
itself because it requires solving a dynamic program with
a high-dimensional state variable. Our proposed method
approximates the value functions in the booking control
problem and uses these approximations to estimate the total
expected profit from the spot market. The value function
approximations for the spot market problem provides a
practical booking control policy. Furthermore, we make the
allotment allocation decisions by maximizing the sum of
the gross profit from the allotments and the estimated total
expected profit from the spot market.

In this paper, we make the following research contri-
butions. (1) We present a tractable model that integrates
multiple allotment contracts and spot market bookings of
an airline for a group of parallel flights. As far as we know,
this appears to be the first operational model that treats such
integration. (2) We construct well-performing booking con-
trol policies for the booking requests that occur on the spot
market. These policies are useful even when there are no
allotment contracts and the airline sells all its capacity on
the spot market. (3) We show how to obtain upper bounds
on the optimal total expected profit from the spot market.
The upper bounds become useful when testing the qual-
ity of a booking control policy. Moreover, we demonstrate
that the upper bounds provide a valuation tool for the spot
market that can aid the airline in allotment contract nego-
tiations. (4) The booking control policies used for the spot
market are essentially bid price policies that use a revenue
barrier for each cargo type. We show that the revenue bar-
riers increase as we commit to more booking requests. This
monotonic property is in alignment with the expectation
that as we commit to more booking requests, we are less
likely to accept a new booking request. (5) Computational

experiments indicate that our approach can be applied to
realistic problems and provides well-performing allotment
allocation and booking control decisions.

The rest of the paper is organized as follows. In §2, we
provide a literature review. In §3, we formulate a basic
optimization problem to maximize the total profit by allo-
cating the capacity between the allotment contracts and the
spot market. This problem requires knowledge of the total
expected profit from the spot market and we capture this
total expected profit by formulating a dynamic program
for the spot market booking control problem. In §4, we
develop a method to approximate the value functions in
the dynamic programming formulation of the spot market
booking control problem. In §5, we use these value func-
tion approximations to allocate the capacity between the
allotment contracts and the spot market. In §6, we develop
a booking control policy for the requests that occur on the
spot market and establish desirable monotonic properties of
this policy. In §7, we provide computational experiments.
In §8, we conclude.

2. Literature Review

Booking control in cargo transportation is an active area
of research. Kasilingam (1996) compares passenger and
cargo booking control and discusses potential modeling
approaches. This paper is the first one to lay out the main
features of cargo booking control, including multiple dimen-
sions of capacity and the presence of allotments. Blomeyer
(2006) provides additional details on cargo booking prac-
tices. Several recent papers also review air cargo revenue
management from a practical point of view. Billings et al.
(2003) compare business models in the cargo and passen-
ger cases and formulate the challenges for cargo revenue
management. The authors emphasize key questions such as
managing cargo capacity through allotment contracts, the
trade-off between the allotments and the spot market, as
well as uncertainty in the actual cargo shipped compared
to capacity booked. Slager and Kapteijns (2003) discuss
the existing cargo revenue management implementation at
KLM. In particular, the authors discuss margin manage-
ment on allotment contracts and on spot market shipments.
According to this paper, the current practice of KLM is to
collect bids for contracted capacity twice a year, at the start
of IATA summer and winter schedules. The authors also
mention that performance of the contracts is monitored on
a weekly basis, and contract utilization is expected to attain
certain performance targets. An enhanced list of complex-
ities for air cargo revenue management from a business
perspective is given by Becker and Dill (2007).

Several papers explore the cargo booking problem over
a single flight leg. Huang and Hsu (2005) address random
capacity requirements of the booked cargo requests, but they
assume that capacity is counted only in units of weight. Luo
et al. (2009) and Moussawi and Cakanyildirim (2005) con-
struct protection level policies for the booking control prob-
lem, where capacity is counted in units of both volume and
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weight. The models in these two papers assume that demand
is a static random variable, ignoring the detailed temporal
dynamics of the booking requests. Xiao and Yang (2010)
give a continuous time formulation for the booking control
problem in the ocean transport setting. Amaruchkul et al.
(2007b) provide a dynamic programming formulation of the
booking control problem that captures the detailed temporal
dynamics of the booking requests. They develop numerous
approximations to the value functions. Their dynamic pro-
gramming formulation is similar to ours, but we endogenize
the off-loading problem that decides which cargo bookings
should not be loaded on the flight when there is insufficient
capacity.

The control policy that we use for accepting or reject-
ing the booking requests on the spot market is similar to a
bid price policy. In particular, we compute a revenue bar-
rier for different types of booking requests, capturing the
expected opportunity cost of the capacity used by the book-
ing requests. There has been little work that uses bid prices
in cargo booking control. Pak and Dekker (2005) propose a
bid price policy for the booking control problem that takes
place over a network of flights. Sandhu and Klabjan (2006)
consider an integer programming formulation for the fleet-
ing problem that includes a bid price-based booking con-
trol component for air cargo on a flight network. The bid
prices in the paper are static, ignore the stochastic aspects
of the booking problem, and the performance of these con-
trols is not evaluated. Lastly, Karaesmen (2001) uses infi-
nite dimensional linear programs to compute bid prices,
and the proposed approach is applicable to cargo settings.
Bid price policies are ubiquitous in passenger booking con-
trol. Simpson (1989) and Williamson (1992) were the first
to compute bid prices by using a deterministic linear pro-
gram. Talluri and van Ryzin (1998) show that the bid prices
computed by this linear program are asymptotically optimal
because the capacities and expected numbers of booking
requests increase linearly with the same rate. One shortcom-
ing of the deterministic linear program is that it uses only
the expected numbers of the future booking requests. Talluri
and van Ryzin (1999) try to make up for this shortcoming by
proposing a randomized version that uses actual samples of
the future booking requests. Bertsimas and Popescu (2003)
provide extensions of the deterministic linear program to
cover cancellations. Adelman (2007) and Topaloglu (2009)
propose numerous strategies to approximate the value func-
tions in the dynamic programming formulation of the book-
ing control problem and their approximations provide bid
price policies. The consumer choice model that we use for
the spot market in our paper is similar to the approach
developed by Talluri and van Ryzin (2004) for the passen-
ger case.

There is little work done on allotment and spot mar-
ket booking coordination. The existing literature focuses
on the properties of an allotment contract, whereas we
focus of operational decisions. Hellermann (2006) reviews
the industry and market structure and provides a survey

of related literature. The author also formulates a stylized
static game theoretic model of a capacity contract between
one forwarder and one carrier with one-dimensional capac-
ity. The contract consists of a reservation fee and an exe-
cution fee. The articles of Gupta (2008) and Amaruchkul
et al. (2007a) are concerned with the form and properties of
a contract between a carrier and a single forwarder under
similar assumptions. Gupta (2008) considers two flexible
schemes that allow the carrier to adjust contract parameters
based on the realized demand and shows that this flexibility
allows the carrier to achieve an efficient capacity allocation
between the forwarder and the spot market. Amaruchkul
et al. (2007a) study contracts that are described by a con-
stant allotment, a lump sum payment for the season, and
a per-flight payment that depends on allotment utilization.
They show when such a scheme can eliminate informa-
tional rents.

Other research areas related to our work include the anal-
ysis of dual-channel supply chains (because spot market can
be viewed as a direct sales channel, while the allotments is a
form of wholesale distribution), analysis of advance sales in
retail, and supply chain contracts. Chiang et al. (2003), Tsay
and Agrawal (2004), Xie and Shugan (2001), and Cachon
(2004) provide comprehensive reviews of these fields. The
works in these fields usually focus on fundamental qual-
itative analysis of the marketplace and the supply chain.
In relations to these bodies of literature, our contribution is
an efficient operational approach to management of a large
number of potential advance service contracts that balances
supply and inventory risks in the presence of spot market.

3. Problem Formulation

We consider a problem faced by an airline that operates
a collection of flights over a certain planning horizon to
transport cargo between a particular origin destination pair.
The flights are arranged into a repeated schedule cycle
according to their departure time and the planning hori-
zon includes multiple schedule cycles. A typical length of
a cycle is one week, whereas the planning horizon is on
the order of a few months. The airline sells cargo capac-
ity on these flights through either allotment contracts or
on the spot market. The allotment contracts are signed at
the beginning of the planning horizon, whereas the book-
ing requests on the spot market occur continuously. Both
Hellermann (2006) and Billings et al. (2003) describe prac-
tices of major air cargo carriers that use allotment contracts
of half a year or more in duration. The carriers sign the
new contracts twice a year for winter and summer sched-
ules based on the bids submitted by potential allotment cus-
tomers. Therefore, the parameters of all potential allotment
contracts result from an infrequent bidding and negotiation
process. As the outcome of such a process, each potential
allotment customer provides a list of acceptable contracts.
For example, a lower rate might be acceptable for a larger
allotment, and vice versa. We assume that this list is avail-
able to the airline as a bid from this customer. The bid
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structure depends on specific practices of the airline and the
type of the customer. There are two issues to consider for
the allotment contracts. First, we need to describe the prof-
its and capacity utilizations of allotment contracts. Second,
we need to address the possibility that allotment customers
might want to bid jointly for a combination of allotments
on different flights.

Allotment Profits and Utilizations. We define an
allotment quote as a combination of capacity utilization and
revenue (payment by the allotment customer) for a specific
flight in the schedule. The physical capacity utilized by an
allotment contract on the flight is random, becomes known
only at the departure time, and can be formally described as
a random variable. Similarly, the revenue can be described
as a random variable, whether it is a fixed fee or a function
of the actual capacity utilization on the flight. Therefore, we
treat the allotment quote as a random vector that captures
the capacity utilization and revenue for a particular flight.
This provides a homogeneous modeling description of var-
ious quote formats and information collection practices.

The allotment quote information is also sufficient to
quantify the costs of providing capacity for the allotment
on the flight. Generally, the allotment costs have a com-
plex structure related to the direct costs of providing capac-
ity, such as fuel and handling, the penalty costs associated
with a failure to fulfill shipment obligations, and the indi-
rect opportunity costs of displacing potential spot market
sales. The airlines already have techniques for estimation
of direct costs. The revenue less the variable costs per ship-
ment is called a contribution margin of a shipment and is
usually known in practice. Slager and Kapteijns (2003) give
a detailed discussion of margin management principles. The
penalty costs are associated with additional handling, alter-
native shipping arrangements, and the loss of goodwill but
can also be estimated given information about allotment
utilization. The opportunity costs are perhaps the hardest
to quantify and require an appropriate model of the spot
market booking control process, which we explicitly do in
our paper.

Multiunit Bids. The rationale for multiunit bids is
twofold. The first one is that allotments usually cover a
set of repeated flights, such as all scheduled 6 p.m. flights
between a particular OD pair on Tuesdays. Such sets of
flights are convenient to describe in combination, because
the same capacity utilization and payment structure applies.
Moreover, potential customers expect to obtain all flights in
such sets together. Therefore, to express this indivisibility,
we employ a notion from the combinatorial auctions the-
ory and define atomic bids as sets of allotment quotes that
can be granted only in combination. The quotes comprising
atomic bids in our model play the role similar to that of
regular items in conventional combinatorial auctions.

The second rationale is the phenomenon of consumer
choice, which is important for modelling allotments. The
payments considered acceptable by a prospective allotment

customer might depend on a combination of allotments
granted to this customer by the airline. For example, a cus-
tomer might want to ship cargo between a pair of locations
both on Tuesday and on Thursday. A single large allotment
on either day might be good, but two smaller allotments on
both of these days might be better. The three options are
mutually exclusive.

The rest of this section is separated into two subsections.
In §3.1, we formally introduce the model elements. In §3.2,
we give the objectives of the airline and formulate the opti-
mization problem.

3.1. Model Elements and Notation

Allotment Contracts. Decisions for the allotment con-
tracts are made at the beginning of the planning horizon
and they remain fixed throughout. We use ¥ to denote the
set of flights operated by the airline over the whole plan-
ning horizon. At the beginning of the planning horizon, the
airline receives a finite set . of atomic bids. Each atomic
bid i specifies a set of flights ¥, € ¥ that is used by this
bid if an allotment contract on the terms of the atomic bid
i is granted. We use dummy items to identify bids that are
mutually exclusive. Each dummy item has a one-to-one cor-
respondence with a particular subset of mutually exclusive
atomic bids. Let set & be the combined set of all dummy
items, and for each atomic bid i, let %, € ¥ be the set of its
dummy items. We represent a decision to grant a contract
on the terms of the atomic bid i by a binary decision vari-
able x;. Because each dummy item d € & indicates a mem-
bership of atomic bids in a particular subset {i € .7: d € %}
of bids that cannot be jointly granted, the decision variables
must satisfy a constraint that at most one of the variables in
this subset is equal to one, } i 5. 4eq, X; < 1 for all d € .
Our use of dummy items to represent mutually exclusive
atomic bids corresponds to the OR* bidding language in
combinatorial auctions; see Nisan (2000).

We use Vi to denote the capacity utilization of the
atomic bid i on flight j € ¥,. Noting the discussion at the
beginning of this section, V7 is a random variable and its
value becomes known at the departure time of flight j. The
randomness in Vi captures a common issue of uncertainty
in the actual capacity utilization of allotment contracts.
As we mention in the introduction, capacity utilization in
cargo revenue management is usually measured in units
of volume and weight, and if this is the case, then we
can visualize Vi as a two-dimensional vector, each compo-
nent capturing the volume and weight utilization. With this
interpretation, we can handle the multi-dimensional capac-
ity utilization with no modification in our development.
We use Rj; to denote the revenue generated by the atomic
bid i on flight j. As indicated by Slager and Kapteijns
(2003), the margin and capacity utilization of each allot-
ment contract are collected on a regular basis. This pro-
vides enough information to construct appropriate models
for V} and Rf;. Moreover, an appropriate model for Rf; is
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available regardless of whether customers pay per capacity
booked or per actual utilization. Hellermann (2006) refers
to these types of contracts, respectively, as capacity pur-
chasing agreements and guaranteed capacity agreements.
Thus, we assume that (i) the joint distribution of non-
negative random vector (V, Rf;) for each i € ¥ and j €
¥, is known, depends only on i and j, and has a finite
first moment. Moreover, (ii) random vectors (V7, R), i €
J, j € ¥, are mutually independent within this collection
as well as with any other sources of uncertainty in the
model. Furthermore, the distributions of these vectors do
not depend on the decisions in the model. The indepen-
dence assumption (i)—(ii) aids in parsimonious specifica-
tion of model inputs because only the joint distributions
for each atomic bid/flight combination are necessary. More-
over, in practice, the same distribution can describe flights
that are repeated throughout the schedule (e.g., 6 p.m. flight
on Tuesday for a particular OD pair). Assumption (i) also
implies that capacity utilization for each quote does not
depend on which atomic bids are granted (i.e., decisions
x;, | € F). This is reasonable with respect to decision about
bids submitted by different bidders. With respect to deci-
sions that apply to atomic bids of the same bidder, this
assumption is reasonable as long as submitted bids accu-
rately capture the partition of the expected load gener-
ated by the bidder between the atomic bids. In the online
Appendix EC.3, we indicate how one can relax assump-
tion (ii). An electronic companion to this paper is avail-
able as part of the online version that can be found at
http://or.journal.informs.org/.

Temporal Structure. Although decisions for allotment
contracts remain fixed throughout the planning horizon, the
spot market booking requests occur continuously over the
whole planning horizon. We divide the planning horizon
into 7 time periods indexed by {1, ..., 7}. We assume that
each time period corresponds to a small interval of time that
there is at most one spot market booking request at each
time period. This assumption is not problematic because
the complexity of our model is insensitive to the number
of time periods. The flights depart at different time peri-
ods over the planning horizon {1, ..., 7}. For simplicity of
exposition of the base model, we assume that the departures
of all flights and the corresponding cargo loading decisions
are independent. In particular, the cargo that does not fit
on a particular flight results in a penalty cost but does
not occupy capacity on subsequent flights. We point out
possible relaxations of this assumption later in the paper.
Under independent departures assumption combined with
independence of allotment capacity utilizations on differ-
ent flights, it is irrelevant when the departures actually
occur during the planning horizon because loading deci-
sions associated with each flight do not affect the system
state. Thus, we assume without loss of generality that all
flights depart at time period 7+ 1. Independent departures
assumption is justified when the penalty for rescheduling

cargo to a later flight operated by the airline is comparable
to that of seeking alternative shipping arrangements. This is
realistic when competition enforces high customer service
standards. Additional discussion of the relation between
flight independence and assumption (i)—(ii) is provided in
the online Appendix EC.3.

Spot Market. We use # to denote the set of cargo
types for which we can receive booking requests on the spot
market. Following Amaruchkul et al. (2007b), we assume
that cargo types differ in their capacity utilizations and
profit margins. A spot market booking for cargo type k on
flight j generates a revenue of R}, and utilizes a capac-
ity of V3. Similar to Vi, the value of the random vari-
able V; becomes known only at the departure time of
flight j. Similarly to allotments, we assume that nonneg-
ative random vectors (V3 Rj;) have a known joint distri-
bution with a finite first moment that depends only on the
combination of j € ¥ and k € &, and that these random
vectors are mutually independent within the collection as
well as with any other sources of uncertainty in the model.
This assumption is reasonable if applied to capacity utiliza-
tions only. It is also reasonable if revenues are taken into
account, as long as these revenues result from application
of freight rates and rules that do not change throughout the
planning horizon. For example, for two-dimensional Vi,
Amaruchkul et al. (2007b) consider R, that is computed
via given type-dependent function of chargeable weight
defined as the maximum of the actual cargo weight and its
volume scaled by a given constant. An interesting practi-
cal concern is that the capacity utilization of a spot market
booking for cargo type k might have different variabil-
ity, depending on when the booking is made. In particular,
the uncertainty in the capacity utilization of the spot mar-
ket bookings that are made later in the booking horizon
might be smaller because these spot market bookings are
made with a shorter lead time for service. We can model
different variability for spot market bookings by defining
multiple cargo types depending on when the spot market
booking is made. This approach amounts to working with
the full set of cargo types {(k,7): ke H,t=1,...,7},
where (k, t) corresponds to cargo type k booked on the
spot market at time ¢. In this case, we simply need to adjust
the random variables (V, R};) as (Vj,, R};,) so that V3,
and R, respectively, correspond to the capacity utilization
and revenue of a spot market booking of type k for flight
J accepted at time period ¢. The random variables V, and
Vj.» might have different variances.

The spot market demands exhibit consumer choice
behavior. In particular, the control exerted by the airline on
the spot market is captured by the set f C ¥ x H#, cor-
responding to the flight and cargo type combinations that
are open for the spot market bookings. This is to say that
(j, k) € & if and only if flight j is open for cargo type
k spot market bookings at the current time period. A spot
market customer arriving into the system observes the set
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of open flight and cargo type combinations and makes a
choice within this set. Given that the set of open flight and
cargo type combinations at the time period ¢ is &, we use
P;,() to denote the probability that there is a spot mar-
ket booking for flight j and cargo type k. The probabilities
(P (F): F C F x H} are a part of the problem data, and
we naturally have Py, (&) =0 whenever (j, k) ¢ & or time
period ¢ corresponds to a time period after the departure
time of flight j. This model is a standard way of modeling
consumer choice in revenue management; see Talluri and
van Ryzin (2004). With respect to spot market demand pro-
cess, we make an independence assumption similar to that
on allotment and spot market capacity utilization and rev-
enue uncertainty. In particular, probabilities P, (&) depend
only on flight j € ¥, cargo type k € &, time ¢, and the set
of open flight-cargo type combinations &; and the book-
ing events are mutually independent across time as well as
with the other sources of uncertainty in the model.

3.2. Airline’s Objectives and
Optimization Problem

The airline is interested in maximizing the total expected
profit over the planning horizon by selecting the appropri-
ate allotments from the available bids, controlling bookings
on the spot market and managing the cargo loading pro-
cess. We structure the optimization problem formulation
according to these three decision areas.

Loading Decisions. As mentioned before, the inde-
pendent departures assumption allows us to assume that
all flights depart at time period 7+ 1. Because the allot-
ment contracts typically generate composite shipments, we
assume that the airline may ship or fail to ship a part of the
total cargo generated by an allotment contract. The regular
cost of shipping fraction « of the allotment from atomic
bid 7 on flight j is aCj. Likewise, the penalty cost of not
accommodating fraction « of the allotment from atomic bid
i on flight j is aéi‘;. The costs ég and C7; are treated in gen-
eral as random variables dependent on capacity utilization
Vii. For spot market cargo, we assume that each unit is indi-
visible and let the regular and penalty costs for cargo type
k on flight j be Cj; and éjk, respectively. These costs are
also random variables dependent on capacity utilization V.
Different values of allotment and spot market penalties (C a

and C ") allow balance of the loading priorities of different
allotment and spot market cargo booked for the same flight.
If we set all C “x to asifficiently high constant and calibrate
the parameter éf} accordingly, then our model minimizes
the expected number of rejected spot market bookings
along with an accordingly calibrated cost for rejected allot-
ment requests. The total available capacity on flight j is
\7j. Let nj be the total number of accepted spot market
bookings for cargo type k on ﬂight j. In this case, each
spot market booking / =1, ..., n; will have its own real-
ization of costs and capacity requlrements (Vs Cs C‘;kl).
Using n={n;: j€ ¥, k € H} to denote the total numbers

of accepted spot market bookings, x = {x;: i € .} to denote

the accepted atomic bids, and U = {{(V}};, Cj,,, Ck,) =
L.ony, ke R} {(V§, C, C") i €.7}, je ¥} to denote
a collection of realized costs and capacity requirements, we
can minimize the total of all regular and penalty costs by

solving the mixed integer program

I'(x,n, U) = max —ZZX(C“ ”+C“[1—ZU])

i€t je¥;
- Z Z Z( klekl C;kl[l - Zj‘kl])’
JjeF ke I=1

)

subject to

Z xzvzjlza + Z Z klzjkl S

ie g:jel; ket 1=1

forall je ¥, (2)

0<z;<1l forallied, jegf, (3)
Z‘J'-kle{O,l} forall je ¥, ke,

I=l...nge (¥

The decision variable zj; corresponds to the fraction of the
allotment from atomic bid i that we load on flight j and
the decision variable zj,, takes value one if we load the
Ith booked spot market request for flight j and cargo type
k. The first set of constraints represent a requirement that
the total capacity utilization from all the allotment and spot
market bookings cannot exceed the available capacity. The
variables and constraints of Problem (1)—(4) can be grouped
by flight so that decisions associated with each flight do not
participate in the constraints corresponding to other flights.
Therefore, the problem has a special separable structure: its
feasible set is formed as a direct product of the feasible sets
for the decisions associated with each flight. Because of
the linearity of the objective, the problem decomposes by
the flights, but this is simply because the loading decisions
for different flights are independent. Shortly, we describe
a possible relaxation of this assumption, after we elaborate
on the booking control problem for the spot market.

Booking Control for the Spot Market. We formulate
the spot market booking control problem as a dynamic pro-
gram over the time periods {1, ..., 7}. In this dynamic pro-
gramming formulation, we use n={n;: j€ ¥, k€ #} as
the state variable, where n i is the total number of accepted
spot market bookings for cargo type k on flight j up to the
current time period. We use & C ¥ x # to capture the deci-
sions, where & corresponds to the set of flight and cargo
type combinations that are open for spot market bookings
at the current time period. At time ¢, a new booking for
cargo type k on flight j occurs with probability P, ()
resulting in a new state n+ e, where we use ¢, to denote
the | #| x |#| dimensional unit vector with a one in the ele-
ment corresponding to (j, k) € ¥ x F. In this case, we can
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find the optimal booking control policy for the spot market subject to Y x;<1 forallde P, (7)
by solving the optimality equation ic.7:de;

x;€{0,1} forallie.¥. (8)

I (e = ma { S P (PERY) 4y (ron + 3]

(j. k)es

+ [1 -y P,k,(y)}J,H(x, n)}

U, ke

/kt(sp) [E{R )+ (s ”"‘e,k)

e n)]} g (o). s)

In the expression above, the revenue R;k associated with a
spot market booking is assumed to be random, because the
revenue might depend on the realization of the size of the
cargo at the departure time. Therefore, we have to charge
the expected revenue when making the booking control
decision. The boundary condition for the optimality equa-
tion above is J.; (x, n) =E{I'(x, n, U)}, accounting for the
total cost incurred at the departure time. In this case, let-
ting 0 be the | #| x | #| dimensional vector of zeros, J, (x, 0)
corresponds to the optimal total expected profit from the
spot market bookings over the whole planning horizon and
the loading decisions at the departure time, given that the
allotment contracts granted on the terms of the different
atomic bids are captured by the vector x = {x;: i € F}.

Even when the loading problem in (1)—(4) decomposes
by the flights under independent departures assumption, the
optimality equation in (5) still does not decompose by the
flights because an arriving spot market customer makes a
choice over all flights according to the choice probabili-
ties {Py,(S): j € ¥, k € H}. Furthermore, we emphasize
that if there are two flights j and j’ such that the cargo
for flight j can be also be carried on flight j’, then we
can extend the model by minimal modifications in Problem
(1)-(4). In particular, we can introduce decision variables
into Problem (1)—(4) to capture the portion of the cargo
that is shifted from flight j to j'. If the departure time of
flights j and j” are close enough in time that the spot market
bookings in between the two departure times are negligi-
ble, then the dynamic programming formulation in (5) goes
through with no modifications and we can still assume that
all flight departures occur at the end of the planning hori-
zon. These modifications partially relax independent depar-
tures assumption. We elaborate on this extension further in
the online Appendix EC.4.

Allotment Selection. Noting that J, (x, 0) captures the
total expected profit from the spot market bookings and
the costs associated with loading decisions at the departure
time, we can choose the allotment contracts by solving the
nonlinear integer program

max Y > E{R{}x,+J,(x,0), (6)

ied je¥;

In the problem above, } ;s R}, is the total revenue from
an allotment contract granted on the terms of the atomic
bid i. At the time of making the bid allocation decisions,
we charge the expected value of this revenue. The costs
associated with serving this allotment are already included
into J, (x, 0).

Problem (6)—(8) looks similar to the traditional value
determination problem in combinatorial auctions, espe-
cially in the form of its constraints. However, the important
difference is that the substance being auctioned, which is
the capacity of flights, does not enter the constraints at all.
Instead, the capacity utilization enters through the poten-
tially nonlinear term J(x,0) in the objective. In general,
computing J, (x, 0) for a fixed value of x is difficult because
the state variable in the optimality equation in (5) is a high-
dimensional vector. This difficulty, coupled with a discrete
nonlinear optimization over x, makes Problem (6)—(8) com-
putationally intractable. In the next section, we develop a
method to approximate J,(x,0), which allows us to find
good solutions to Problem (6)—(8). An approximation to
J;(x,0) is also important in itself because it allows us to
construct booking control policies for the spot market.

4. Approximating the Booking Problem

In this section, we develop a method to approximate the
value functions {J,(x,-): t =1,...,7} in the spot mar-
ket booking control problem. We note that a major com-
plicating factor in Problem (1)-(4) is the presence of
the capacity constraints. This suggests relaxing these con-
straints by associating the positive Lagrange multipliers
A={A;: j € ¥} with them. In this case, the relaxed version
of Problem (1)—(4) takes the form

C(x,n, A, U)y=max —> Y x{Chzf + é;[l —z5]

i€t je¥;
+ A Vize)
- Z Z Z{ klZJkl + Cjkl[l - Zj’kl]
jef ke =1
+A; ]klzjkl} + ZAJ K ()
je¥
subject to  (3), (4). (10)

The shift in our notation from I'(x, n, U) to f(x, n, A, U)
emphasizes that the problem above provides only an
approximation to the penalty cost that we incur at the
departure time, and its optimal objective value depends
on the Lagrange multipliers. If the capacity is measured
in multiple dimensions, such as weight and volume, then
our development goes through as long as A; is a multi-
dimensional vector and A;V, A;V;, and A; V are under-
stood as scalar products.
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In this case, we can replace the boundary condition of the
optimality equation in (5) with the approximate boundary
condition J,,(x,n,A) = E{['(x,n, A, U)} and obtain the
value function approximations {J,(x,-,A): t=1,...,7} by
solving the optimality equation

TGem )
— o | 5 PUOIER) TG+
(U, kes
S| AR R

Once more, the shift in our notation from J,(x,-) to
J.(x.-, \) emphasizes that J,(x, -, A) is only an approxima-
tion to J,(x,-), and the solution to the optimality equa-
tion in (11) with the approximate boundary condition
Jo1(x,n, \) = E{T'(x, n, A, U)} depends on the Lagrange
multipliers. Shortly, we dwell on how we should choose the
Lagrange multipliers so that {J(x,-,A): r=1,..., 7} are
good approximations to the value functions {J(x,-): t =
. Th

There are two important properties of the optimality
equation in (11). First, this optimality equation can be
solved very efficiently. As a matter of fact, Proposition 1
below shows that there is a closed-form solution to this
optimality equation. To motivate this result, we begin by
defining some notation. We let

Bji(A;) =E{min(Cj; + AV, C”)}
for all i € ¥ and j € ¥,. Intuitively speaking, the term
Bji(X;) captures the expected total cost of serving the
atomic bid i on flight leg j, when this cost is viewed from
the beginning of the planning horizon. In particular, the
atomic bid 7 utilizes V7 units of capacity on flight j. Noting
that the Lagrange multlpher A; measures the opportunity
cost of the capacity on flight j, the total opportunity cost
of the capacity consumed by the atomic bid i on flight j is
A;V§. By adding a direct regular cost Cj; we get the total
cost of shipping as Cj;+ A, V7. However, we also have the
option of not loading this cargo on the flight and the cost
associated with this option is él‘; It is sensible to follow the
option with the smallest cost, in which case, the cost of the
atomic bid i on flight j is min(Cjj+A; V5, C“) Because we
do not know the capacity utlhzatlon of the atomic bid at
the beginning of the planning horizon, we take an expecta-
tion to capture the expected cost of serving the atomic bid
i on flight j, when this cost is viewed from the beginning
of the planning horizon. Similar to Bj(A;), we also define

B, (A;) = E{min(C} + AV, €3}
for all j € ¥ and k € K. A similar intuitive reasoning indi-

cates that the term B, (A;) captures the expected total cost
of serving a spot market booking request of cargo type k on

flight j. We note that both B;(A;) and B}, (A;) are straight-
forward functions of the Lagrange multipliers. We are now
ready to show that there is a closed-form solution to the
optimality equation in (11). All our proofs are deferred to
the electronic companion EC.1. An electronic companion
to this paper is available as part of the online version that
can be found at http://or.journal.informs.org/.

PRrOPOSITION 1. Letting {J.(x,-,A): t =1,...,7} be the
solution to the optimality equation in (11), we have the
identity

‘il‘(x’n’/\)=ZAj‘7j_Zle lj(A) ZZBjk(/\ )njk

jey ie¥ je¥; jeF ke
£0,00, (12)
where
D,(A) = max{ Y P PIERY) - Bjk()tj)]}- (13)

(j,k)er

The term J,(x, n, ) on the left side of (12) is an approx-
imation to the optimal total expected profit from the spot
market bookings over the time periods {7, ..., 7} and the
loading decisions at the departure time. The right side of
(12) separates this expected profit into four components
with interesting insights. The first component captures the
total value of the capacity available on all the flights. Not-
ing the intuitive interpretation of Bjj(A;) as expected total
costs associated with serving a ﬂlght Jj part of the atomic
bid i, the second component corresponds to the expected
total costs associated with serving the accepted bids on
all the flight legs. Similarly, the third component repre-
sents the expected total costs associated with serving all the
accepted spot market bookings. Finally, the last component
estimates the maximum total expected future profit from
the spot market. In particular, noting the intuitive inter-
pretation for B}, (A;) as expected total cost, the difference
E{R}} — Bj,(A;) is the expected profit from a spot market
booking for cargo type k on flight j. The weighted average
represented by the summation over (j, k) € & in expres-
sion (13) for ®,(A) corresponds to the expected value over
all possible spot market bookings at time ¢. Therefore, the
optimization problem in (13) finds a set of flight and cargo
type combinations to open at time period ¢ so as to max-
imize the expected profit ®d,(A) at time ¢. In the online
Appendix EC.5, we discuss important choice models that
make the solution of this optimization problem particularly
easy. An interesting aspect of our solution approach is that
the computation of J,(x, n, A) does not get much more dif-
ficult when capacity is measured in multiple dimensions,
such as weight or volume. Furthermore, our Lagrangian
relaxation approach gives a natural way to assess the value
of a unit of capacity, irrespective of how many different
units are used to measure capacity.
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The second important property of the optimality equation
in (11) is that it provides an upper bound on the optimal
expected spot market profits. In particular, the next proposi-
tion shows that J (x, 0, A) is an upper bound on the J; (x, 0)
as long as the Lagrange multipliers are nonnegative.

PROPOSITION 2. If A > 0, then we have J,(x,0,\) >

J,(x,0).

The implication of this result is that we can obtain the
tightest possible upper bound on the optimal total expected
profit from the spot market bookings and the loading deci-
sions by solving the problem

r)flinf1 (x,0,A). (14)

Letting A*(x, 0) be an optimal solution to Problem (14), we
can use J;(x,0, A*(x, 0)) as an approximation to J,(x, 0).
It is important to emphasize that Problem (14) provides a
concrete method for choosing the Lagrange multipliers.

Closing this section, we note that Bf;(A;) and B} (A;)
are concave functions of A; as minimum of a linear func-
tion and a constant is concave. Noting that the maximum
of convex functions is also convex, (13) implies that ®,(A),
and thus J,(x,0, A) are convex functions of the Lagrange
multipliers. Therefore, Problem (14) is a convex optimiza-
tion problem, and it can be solved by using standard convex
optimization tools. This observation becomes useful in the
next section.

5. Approximating the Allotment Problem

Our development in the previous section suggests approxi-
mating J; (x,0) by min,.,J(x,0, A). In this case, we can
replace J, (x, 0) in Problem (6)—(8) with min,, Ji(x,0, )
and choose the allotment contracts by solving the problem

max ) Y E{R{}x; +m1nJ1(x 0, ), (15)
ied je¥;
subject to  (7)—(8). (16)

Our approach for solving the problem above is based on
the idea of Benders decomposition or constraint genera-
tion. In a nutshell, we reformulate Problem (15)—(16) as a
mixed-integer programming problem with an infinite num-
ber of constraints and devise a method to sample a finite
subset of constraints resulting in an optimal solution to the
original problem. To this end, we replace min, J,(x,0,A)
in the problem above with a single decision variable y and
impose the constraint that y < .71 (x, 0, A) for all A >0 on
this decision variable. Using the closed-form expression

for J,(x,0, \) given in Proposition 1, this idea yields the
problem
max Y > E{R{}x, 4+, (17)
i€t je¥;
subject to (7)—(8), (18)
22 Bi(A)x+y< Z/\V+Z‘D()\)
ic. jef; JeF

for all A>0. (19)

Problem (17)—(19) is equivalent to Problem (15)—(16). Fur-
thermore, the objective function and constraints of this
problem are linear in all of the decision variables x =
{x;: i € 7} and y. However, Problem (17)—(19) has an infi-
nite number of constraints and cannot be solved directly.

Throughout this section, we refer to Problem (17)—(19)
as Problem (P). We consider a relaxed version of Prob-
lem (P), where the infinite number of constraints (19) are
replaced by the finite number of constraints

Y B +y <AV D D))
i€y je¥; Jjey =1

forall Ae {A',..., A5}, (20)
where {A',..., A5} is a finite set of Lagrange multipliers.

We refer to this relaxed version of Problem (P) as
(R —{A!,...,A5}). In this case, we can solve problem
(R—{A',...,A5}) for a finite set of Lagrange multipli-
ers to obtain the optimal solution (X, y). Problem (R —
{A',...,A5}) is a mixed-integer program with a finite
number of constraints. Following this, we can solve the
problem min,, J,(%,0,A) to obtain an optimal solution
A*(%, 0). If the optimal objective value of the last problem
matches ¥, then (X, y) provide an optimal solution to the
full problem (P), and we stop. Otherwise, we add A*(%, 0)
to the set of Lagrange multipliers {A',..., A5} and solve
problem (R — {A',..., A%, A*(%,0)}). This idea yields the
following algorithm for solving problem (P).

1. Start with some initial set of Lagrange multipliers
{Al, ..., A5} of size S. The set can be empty, in which
case S =0.

2. Solve problem (R —{A', ..., AS}) to within the accu-
racy €/3 of the optimum. Let the resulting feasible solution
be (x5, y%).

3. Solve the problem min,s,J; (x5, 0, A) to within the
accuracy €/3 of the optimum. Let the resulting feasible
solution be AST!,

4. If J,(x5,0,A5t") > y$ — €/3, then stop. Otherwise,
increment S by 1 and go back to Step 2.

We have the following result for the proposed algorithm.

PRrROPOSITION 3. The proposed algorithm terminates in a
finite number of steps. At termination, (x5,y5 — 2€/3) is
an e-optimal solution to problem (P).

This result implies that for every fixed €, we can find e-
optimal solution to problem (P) in a finite number of steps
even though optimization algorithms used in practice for
mixed integer programming and convex minimization are
approximate.

6. Practical Implementation of
Spot Market Booking Control
Problem (15)—(16) provides a method to choose the allot-

ment contracts. However, we also need to make control
decisions for the booking requests on the spot market.
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A practical implementation of the booking control policy
for the spot market has to be computationally efficient as
well as sufficiently robust to perform well under a variety
of types of consumer behavior and demand patterns. In this
section, we focus on setting up a booking control policy
for the spot market.

Letting x* be an optimal solution to Problem (15)—(16),
we choose the allotment contracts as indicated by the
solution x*. In this case, we can solve the problem
min, 5, Jy(x*,0,1) to choose a good set of Lagrange
multipliers A™ = A*(x*, 0). This allows us to use

{J.(x*,-,A*): t=1,..., 7} as approximations to the value
functions {J,(x*,-): t = 1,...,7}. In other words, we
can replace {J,(x*,-): t =1,...,7} in Problem (5) with
{.Z(x*, -, A*):t=1,..., 7} and solve this problem to make

the booking control decisions for the spot market at dif-
ferent time periods. Proposition 1 shows that J,(x, , A**)
is a linear function of n, and the difference J, @ n+
€y M) — .i,+1(x*, n, A**) in the right side of (5) is equal
to —Bj, (A7%). Therefore, we can solve the problem

max{ Y ij,w)[tE{R;k}—B_;ku;f*)]}+Jz+l<x>«,n,m*)

TEIXHN (j 0es
(21)

to make the booking control decisions for the spot market
at time period ¢. This is to say that if &* is the optimal
solution to the optimization problem above, then the set of
flight and cargo type combinations that the airline opens for
sale at time period ¢ is given by &*. We note that the term
Jip1 (2%, m, A*) in (21) does not affect the booking control
decisions at time period ¢, and the first term is equal to
d,(A*™*) defined by (13).

The chief drawback of the booking control policy
obtained from Problem (21) is that the optimal solution to
this problem does not depend on the numbers of accepted
spot market bookings. In particular, irrespective of whether
we reach time period ¢ with too many accepted spot mar-
ket bookings or with too few, we always open the same
set of flight- and cargo-type combinations for sale. One
way to remedy this shortcoming is to refresh the Lagrange
multipliers periodically over the planning horizon. In other
words, if the numbers of accepted spot market bookings by
time period ¢ are given by n, then we can solve the problem
minDoJ;(x*, n, A) to obtain a new set of Lagrange mul-
tipliers at the current time period and use these Lagrange
multipliers in Problem (21) to make the spot market book-
ing control decisions. In this way, because the optimal
solution to the problem min, J,(x*, n, \) depends on the
numbers of accepted booking requests n, the booking con-
trol decisions from Problem (21) also depend on the num-
bers of accepted bookings. An interesting question is how
Problem (21) changes when we reach the same time period
with different numbers of accepted spot market bookings.
The next proposition attempts to give an answer to this
question.

PROPOSITION 4. Fix cargo allotment decisions x, flight j,
and cargo type k. Let A*(x, n) be an optimal solution to
the problem min, J.(x, n, A). If there are multiple optimal
solutions to this problem, then choose A\*(x, n) as the one
that yields the largest value for Bj (Xj(x, n)). In this case,
we have B (Xj(x,n+ey)) 2 Bj (A} (x, n)).

This result indicates that if we reach time period ¢ with
more accepted spot market bookings for flight j and cargo
type k and solve the problem min,, J,(x*, n, A) to choose
a set of Lagrange multipliers at this time period, then the
adjustment B} (A;) to the revenue RS in problem (21)
becomes larger. This makes flight- and cargo-type pair
(j, k) less attractive to open for sale. Therefore, if we reach
time period r with a larger number of accepted spot mar-
ket bookings for flight j and cargo type k, then we are
less willing to open this flight- and cargo-type combination
for sale.

A remaining issue of efficient calculation of the optimal
set & in Equation (21) or its dynamic variant is addressed
in the online Appendix EC.5.

7. Computational Experiments

In this section, we describe numerical experiments with
the model. We lay out the setup of these experiments and
provide practical motivation for the settings in §7.1. The
simulated performance of the proposed allotment/booking
control policy is discussed in §7.2. Under the proposed con-
trol policy, the average simulated profit is at least within
13% of the theoretical upper bound in all experimental con-
figurations and is within 6% of the bound in the best case.
We also find that profit and cost structures exhibit intuitive
dependence on experimental parameters. For example, all
indicators suggest that the airline creates a higher capacity
buffer for the spot market when uncertainty in spot mar-
ket cargo volume is high. Moreover, this buffer reduces the
contribution of penalties to the total costs. In §7.3, we gen-
erate additional insight into priorities of the decision maker
by analyzing allotment and spot market policies suggested
by the model. Among other findings, we see how the opti-
mization process handles additional spot market risk by
accepting a larger number of smaller spot market bookings
when uncertainty in their volume is high and by increasing
the shipping rates charged on oversized cargo. We conclude
this section with a brief discussion of time performance and
scalability to industry-sized instances in §7.4.

7.1. Setup

The experimental setup consists of the following elements:
(1) the planning horizon, the flight schedule and capaci-
ties of flights; (2) classification of spot market bookings
into cargo types and their characteristics (volumes, weights,
revenues, penalties, and costs); (3) allotment bids and their
characteristics; (4) the arrival process and the consumer
choice model on the spot market; and, finally, (5) options
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for allotment selection and spot market optimization proce-
dures. In the main body of the paper, we highlight only the
most important elements of this setup, with more technical
details relegated to the online Appendix EC.2.

The planning horizon approximately corresponds to a
typical half-a-year allotment contract. We assume that
the flight schedule follows a weekly pattern and consider
jointly 104 flight departures arranged into 26 schedule
cycles with four flights each (equally spaced during the
cycle). Our earlier development in the paper assumed that
the capacity of flight j is measured in terms of a single
quantity \7j, but we also pointed out how to extend our
model to the case where the capacity is measured in terms
of multiple units, such as volume and weight. In our com-
putational experiments, we indeed assume that the capacity
of a flight is measured in terms of both volume and weight.
The volume V and weight W capacities of each flight are
the same, but we consider four different combinations of
capacity settings. The maximum total cargo volume V can
be 75 m* or 150 m?, and the maximum structural pay-
load (weight) W can be 10 ton or 20 ton. These values
are in the range of the commonly used air cargo airplanes.
(For example, Boeing 727-100C aircraft has the maximum
cargo volume of 118 m* and the maximum structural pay-
load from 14.7 to 18.6 ton depending on its operational
mode.) To make the scale of capacity dimensions easier to
compare, we convert all volume values into dimensional
weight by dividing them with the factor of 6,000 cm®/kg =
6 m’/metric ton (the value commonly used in industry).
This results in the volume capacity levels expressed as 12.5
and 25 tons of dimensional weight.

Cargo Types and Their Characteristics. The variety
of cargo encountered in practice is large, and each type
of cargo can, in general, have its own weight and volume
distribution, shipping rate, and cost/penalty characteristics.
To represent this variety in our experiments while keeping
the number of different settings under control, we randomly
generate 1,000 cargo types according to the rules described
in the online Appendix EC.2. The generation procedure is
repeated eight times, and each set of classes is processed
under each combination of the controlled experimental set-
tings. The form of the distribution of cargo weight and
volume is the same as in numerical tests of Amaruchkul
et al. (2007b) and reflects an observation of Slager and
Kapteijns (2003) that volume measurement and registration
are problematic, so there is significantly more uncertainty
in volume. In particular, because it is easy for shippers to
provide accurate weight information at the time of booking,
we assume that the weight for each cargo type is known
with certainty. On the other hand, the volume of each
cargo type is uncertain and follows a lognormal distribu-
tion. We test two levels of the coefficient of variation of the
volume distribution #° = 0.2 (low uncertainty) and 6* = 0.8
(high uncertainty). The rates of different types are randomly
sampled from the interval [1,500, 3,000] (in $/ton). Corre-
sponding to industry practice, the actual amount charged to

the customer is the rate times the maximum of the ship-
ment weight and its dimensional weight. The magnitude of
shipping costs and penalties for spot market cargo is pro-
portional to its shipping rate.

Allotment Bids and Their Characteristics. For each
set of randomly chosen spot market cargo types we ran-
domly generate 20 allotment bids. Because we consider a
particular origin—destination pair, such number of bidders is
reasonable. The bids generate the same capacity utilization
pattern for every schedule cycle and are equally likely (1)
to require one flight or two flights in a cycle conditional on
each other, and (2) to be inflexible (only one flight/pair of
flights in a cycle is acceptable) or inflexible (two different
flight/pairs are acceptable). The requested rate and size of
a bid are the same for all flights indicated in the bid. The
rates are sampled from the interval [1,000, 2,000] (in $/ton)
and the sizes (the maximum weight) from the normal dis-
tribution with mean 5 tons and standard deviation 2 tons.
The allotment utilization (volume and weight) distribution
is selected to be the same for all bids so that the weight
utilization reflects a practical rule of “80% utilization 80%
of the time,” while the volume distribution is lognormal
conditional on the weight. We specifically examine two lev-
els of the coefficient of variation of the allotment volume
distribution: 6 =0.2 (low uncertainty) and 6 = 0.4 (high
uncertainty). Thus, there are a total of four combinations
in the level of uncertainty in volume: low/high uncertainty
for the spot market combined with low/high uncertainty
for the allotments. These four combinations together with
four combinations for flight capacity result in a total of 16
experimental scenarios. Each of these scenarios is tested on
eight different instances of allotment bids and cargo types.

The remaining elements are the arrival process and the
consumer choice model. The time between consecutive
flights is partitioned into 60 periods. There is a 0.5 proba-
bility of a spot market request arrival in each period with
each request equally likely to be any of the 1,000 cargo
types. Arriving customers consider flights up to two cycles
in advance (a total of eight flights corresponding to a
two-week booking horizon common for cargo) as well as
a no-purchase option. The choice probabilities for each
cargo type follow a multinomial logit model with randomly
selected parameters.

Finally, among the options for optimization procedures,
we highlight the following practical techniques to reduce
dimensions of A vectors used in upper bound calculations
and associated computational overhead:

e For allotment selection, the bound J;(x,0, A) is opti-
mized under the restriction that components of A are the
same for the corresponding flights in different schedule
cycles. This results in an eight-dimensional convex mini-
mization problem.

e For spot market booking control, the bound J,(x, -, A)
is reoptimized (as suggested in §6), resulting in new A,
twice between consecutive flights (that is, every 30 deci-
sion periods—eight times per schedule cycle and 208 times
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during the entire planning horizon). The components of A
are allowed to vary individually for flights within the first
two schedule cycles around ¢ but are constrained to be the
same for all corresponding flights of the subsequent sched-
ule cycles. This results in a 24-dimensional convex mini-
mization problem.

The problem min,,J,(x,n,A), in all cases, is
solved by a bundle method for nondifferentiable convex
minimization.

7.2. Performance and Structure of
Profit, Cost, and Penalty

We start this subsection by discussing simulated perfor-
mance of the allotment selection method and spot market
booking control compared to the theoretical upper bound
for the optimal expected profit. The performance is mea-
sured as the average percentage ratio of simulated profit of
the 104 flights to the upper bound on the profit value (the
average is over different realizations of allotment bids and
cargo types). Table 1 shows the performance for each of
the 16 experimental settings. We observe that the simulated
profit is in the range [87.1%, 94.8%] of the upper bound,
and there are some intuitive patterns. For example, the rel-
ative performance deteriorates as the level of uncertainty
increases in three out of four capacity configurations. This
is particularly clear in the case of low volume capacity of
12.5. Uncertainty in spot market cargo volume compounds
with uncertainty in allotment volume. It is interesting to
note that the level of volume uncertainty has the highest
impact when volume capacity is low but weight capacity is
high. On the other hand, the level of uncertainty has almost
no effect on relative performance in the opposite situation
of high volume and low weight capacity. This is natural
because in the first case, the uncertain capacity dimension
(volume) is the most restrictive, whereas in the second case,
the certain capacity dimension (weight) is the most restric-
tive. Among all scenarios, the relative performance is the
worst when volume capacity is low but weight capacity
is high.

Because the profit structure highlights the priorities of
the decision maker, we examine the percentage of simu-
lated profits obtained from allotments in Table 2. The per-
centage of profit from allotments significantly decreases
when the level of uncertainty in spot market cargo vol-
ume increases. There can be several explanations for this

Table 1. Performance as the average simulated profit
relative to the theoretical upper bound.
0° =0.2 (%) 0°=0.8 (%)
1% w 6°=02 =04 6°=02 6°=04
12.5 10.0 92.5 90.0 89.8 88.9
12.5 20.0 89.9 87.2 89.2 87.1
25.0 10.0 93.6 94.9 93.5 93.9
25.0 20.0 94.8 93.7 94.7 93.4

Table 2. Percentage of profit derived from allotments.
6°=0.2 (%) 6°=0.8 (%)

1% w 0°=02 =04 §°=02 §°=04

12.5 10.0 83.9 87.6 58.3 67.1

12.5 20.0 87.9 91.3 67.9 72.8

25.0 10.0 84.0 88.1 58.5 67.8

25.0 20.0 84.9 88.8 69.5 73.3

phenomenon, but our subsequent analysis suggests that the
airline is taking fewer allotments and creating a larger
capacity buffer for spot market bookings. Moreover, the air-
line is taking advantage of the profit potential from the spot
market bookings with a high-dimensional weight. (In this
example, the revenue rate of the spot market cargo is higher
than that of allotments. Moreover, higher volume uncer-
tainty, on average, results in a higher-dimensional weight
because the latter’s downside variability is restricted by
known cargo weight.) The percentage of profit from allot-
ments increases when the level of uncertainty in allotment
volume increases. A possible explanation is that the airline
is then forced to leave more space for the allotments. This
effect is confirmed when we look at the number of accepted
allotments and spot market bookings in the next subsec-
tion. Finally, we observe an increase in the percentage of
profit from allotments when weight capacity increases. This
is especially clear in situations when the level of uncer-
tainty in spot market cargo volume is high and the level of
uncertainty in allotment volume is low.

More light can be shed on the role of uncertainty by con-
sidering a percentage of penalty costs in the total cost given
in Table 3. Overall, the relative contribution of penalties
into total costs is the lowest when both volume and weight
capacity is high, and the highest when weight capacity is
high but volume capacity is low. This points to uncertainty
in volume as the main driver of penalties. Interestingly,
an increase in the level of spot market volume uncertainty
decreases the relative contribution of penalties. This agrees
with our earlier observation that the airline is likely to
leave more space for spot market bookings by creating a
larger capacity buffer when spot market volume uncertainty
is high. On the other hand, a higher level of uncertainty
in allotment volume increases the relative contribution of
penalties, especially when volume capacity is tight. This
suggests that a good strategy for reduction of penalties is
to decrease the level of uncertainty in allotment volume.

7.3. Decision Structure and Capacity Utilization

In this subsection, we examine the structure of the airline
decisions for the allotments and the spot market. Table 4
shows the average characteristics of accepted allotments for
each experimental setting in terms of volume and weight
capacity and the level of uncertainty in spot market cargo
and allotment volume. The percentage of accepted allot-
ment bids is higher when weight capacity increases. The
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Table 3. Percentage of penalties in the total cost.
0°=0.2 0°=0.8
i O 09=02  6°=04 6°=02 ‘=04
v w (%) (%) (%) (%)
12.5 10.0 13.0 19.9 14.2 17.3
12.5 20.0 17.5 25.3 15.8 19.9
25.0 10.0 11.5 12.3 9.6 11.0
25.0 20.0 7.3 9.6 7.6 9.3

volume capacity increase has no effect on allotment deci-
sions if weight capacity remains low, but its effects become
significant at the high level of weight capacity. Generally,
the percentage of accepted allotments is somewhat higher
when the level of uncertainty in allotment volume is high.
This is accompanied by a slightly stronger preference for
flexible bids. In contrast, a higher level of spot market vol-
ume uncertainty reduces the fraction of accepted bids. This
indicates that more capacity is allocated to spot market
bookings. The last two columns of the table show the aver-
age difference (Arate) in the rate of accepted allotment bids
with the average bid rate (per ton), and the average differ-
ence (Asize) of the size of accepted allotment bids with the
average bid size. When the airline accepts a smaller number
of bids, the difference in the accepted rate with the average
rate increases (scenarios with low uncertainty in allotment
volume or high uncertainty in spot market volume). The
sizes of accepted allotments remain close to the average
except for one scenario (low volume, high weight capaci-
ties, and low levels of uncertainty in volume of allotment
and spot market cargo).

Finally, we examine the preferences of the airline with
respect to spot market cargo. Table 5 shows the average
characteristics of the accepted spot market cargo for each
scenario: the number accepted in each capacity/uncertainty
scenario averaged over eight data instances, the average

volume and weight of bookings, as well as the linear regres-
sion model parameters expressing a relation of the rate of
accepted bookings to their volume and weight. The volume
in all cases is expressed as dimensional weight, and the unit
of measurement is one ton. The table shows that the number
of accepted bookings increases when the level of uncer-
tainty in spot market cargo volume increases or when the
level of uncertainty in allotment volume decreases. Simulta-
neously with this increase in number, the average volume of
bookings goes down. This suggests that the proposed book-
ing control approach implements an implicit risk pooling
by taking a larger number of, on average, smaller volume
bookings. The average weight (a deterministic capacity
dimension) remains almost the same throughout all scenar-
ios. The regression model parameters describing the rate of
accepted bookings as a linear function of their volume and
weight are interesting. The rate intercepts are the highest
when volume capacity is low but weight capacity is high
(a scenario difficult for optimization), but they are the low-
est when both kinds of capacity are plentiful. According
to the rate sensitivity parameters, in most settings, the pro-
portional increase in the volume and weight of a package
increases its shipping rate. This indicates that the airline
prefers to charge more for oversized cargo because it entails
more uncertainty. The exception is the case of low vol-
ume capacity combined with high weight capacity. In this
case, the airline prefers to reduce the volume of accepted
bookings.

7.4. Time Performance and Scalability
to Industry-Sized Instances

The time performance of the proposed solution method in
these experiments indicates that it is scalable to industry-
sized instances. All simulations in the experiments are
implemented in C4++ on an open-source system (Linux),
and both the initial allotment selection problem and the

Table 4. Average characteristics of accepted allotments for each scenario.

B B % Accepted %Single- %Flexible

1% w 0° 0° (%) flight (%) (%) Arate Asize
12.5 100 02 02 30 46 53 293 0.031
12.5 100 02 04 32 49 56 283 —0.045
12.5 100 0.8 0.2 22 48 52 345 —0.070
12.5 100 0.8 04 25 48 55 324 —0.004
125 200 02 02 35 48 47 280 0.243
125 200 02 04 39 47 49 271 —0.037
125 200 08 0.2 28 40 41 320 0.229
125 200 08 04 32 43 46 308 —0.010
25.0 100 02 02 30 46 53 293 0.031
25.0 100 02 04 32 49 56 283 —0.045
25.0 100 0.8 02 22 48 52 345 —0.070
25.0 100 0.8 04 25 48 55 324 —0.004
250 200 02 02 55 47 52 226 0.029
250 200 02 04 59 47 51 203 —0.035
250 200 0.8 02 48 45 48 262 —0.001
250 200 0.8 04 51 47 52 248 —0.091
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Table 5. Average characteristics of accepted spot market cargo for each scenario.
Number Average Rate Sensitivity to

1% w 0’ 0 Accepted  Volume  Weight intercept ~ Volume  Weight
125 100 02 0.2 135 0.409 0.296 2,550 —524 750
12.5 100 02 04 99 0.447 0.300 2,541 —-504 807
125 100 0.8 0.2 334 0.346 0.296 2,548 —505 615
12.5 100 08 04 266 0.362 0.298 2,573 —495 625
125 200 02 0.2 142 0.306 0.296 2,611 138 —133
125 200 02 04 105 0.304 0.293 2,626 136 —133
125 200 0.8 0.2 321 0.291 0.296 2,572 402 —405
125 200 08 04 274 0.293 0.301 2,608 416 —417
250 100 02 0.2 137 0.408 0.297 2,551 —522 738
250 100 02 04 100 0.450 0.301 2,537 —-520 819
250 100 0.8 0.2 329 0.348 0.298 2,552 —482 580
250 100 0.8 04 267 0.362 0.298 2,570 —523 665
250 200 02 0.2 284 0.353 0.297 2,495 —446 565
250 200 02 04 215 0.372 0.294 2,517 —459 623
250 200 08 0.2 488 0.330 0.297 2,403 —297 358
250 200 08 04 437 0.333 0.297 2,436 —407 476
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terminal off-loading problems are solved with a general
open-source mixed-integer programming solver CBC of
the COIN-OR project. The bundle method used for solv-
ing min, J,(x, n, A) utilizes a linear/quadratic programming
solver CLP of COIN-OR. The jobs are executed on a
SHARCNET serial throughput cluster, and a typical simu-
lation run takes, on average, about 7.5 hours, with allotment
optimization taking approximately three minutes. We point
out that a relatively long 7.5-hour total execution time
represents simulation of a process that takes 26 weeks
to complete in reality. The main source of complexity is
the reoptimization of A and, within it, the repeated cal-
culation of J,(x,-, ). However, because of the special
structure of f,(x, -, A), this task can be efficiently paral-
lelized with existing technology. In practice, because of
the short booking horizon for cargo, and a limited num-
ber of flights for a particular origin—destination pair, the
dimensions of A would not exceed an order of 100 (if
its components are restricted as suggested in our experi-
ments). With a high-quality quadratic programming solver,
the bundle method for optimizing J,(x, -, A) is efficient for
problems of this dimension. (In our experiments, a typi-
cal reoptimization of A takes approximately 10-30 seconds
at the allotment selection stage, and 1-3 minutes at the
booking control stage.) The remaining concern is a solu-
tion of the allotment selection problem. However, this prob-
lem needs to be solved only twice a year, and the proposed
algorithm for the allotment selection problem employs an
integer programming problem similar to the ones arising in
combinatorial auctions. There exist efficient parallel meth-
ods for mixed-integer programming problems, as well as
considerable practical experience in computing the out-
comes of combinatorial auctions of a very large size. There-
fore, scalability challenges posed by the proposed solution
method are purely technical in nature and can be resolved in
practice.

8. Conclusions

In this article, we propose a method to coordinate allot-
ment and spot market cargo capacity allocations for col-
lections of parallel flights. Allotment contracts are chosen
from multiple bids specifying the combinations of flights.
The form of the contract and associated capacity utilization
patterns considered in the model are general. Moreover, the
combinations included in bids can be related to each other
by means of a general OR* bidding language developed in
the combinatorial auctions literature.

The coordination method employs a direct estimate of
the expected profit from the spot market, which is a chal-
lenging task in the case of cargo capacity management.
This estimate is useful even in the absence of the accu-
rate margin data for the allotments. The proposed numerical
procedure is efficient, performs well in the numerical exper-
iments, and results in allotment assignments that have intu-
itive properties. Moreover, the approach also suggests a
bid-price-based booking policy that compares well against
the theoretical upper bound in numerical experiments.
Among other findings, numerical experiments indicate that
the proposed model accepts more lower-size spot market
cargo bookings when the level of uncertainty in the spot
market cargo volume increases. In effect, this indicates
that risk pooling among capacity requirements of differ-
ent cargo is captured by the proposed capacity allocation
method.

In future work, it would be interesting to consider the
problem of allotment and spot market coordination across
a network of flights. It would also be useful to explore
richer models of uncertainty in the capacity utilizations
of allotments and spot market bookings. Moreover, the
proposed general method facilitates a comparative study of
specific forms of allotment contracts in detailed operational
settings.
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Electronic Companion

An electronic companion to this paper is available as part of the
online version that can be found at http://or.journal.informs.org/.
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