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We study the problem faced by a monopolistic company that is dynamically pricing a perishable product or service and
simultaneously learning the demand characteristics of its customers. In the learning procedure, the company observes the
sales history over consecutive learning stages and predicts consumer demand by applying an aggregating algorithm (AA)
to a pool of online stochastic predictors. Numerical implementation uses finite-sample distribution approximations that are
periodically updated using the most recent sales data. These are subsequently altered with a random step characterizing
the stochastic predictors. The company’s pricing policy is optimized with a simulation-based procedure integrated with
AA. The methodology of the paper is general and independent of specific distributional assumptions. We illustrate this
procedure on a demand model for a market in which customers are aware that pricing is dynamic, may time their purchases
strategically, and compete for a limited product supply. We derive the form of this demand model using a game-theoretic
consumer choice model and study its structural properties. Numerical experiments demonstrate that the learning procedure
is robust to deviations of the actual market from the model of the market used in learning.
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1. Introduction
One of the fundamental challenges faced by any company
is that of assessing customer response to changes in the
price of the products or services it sells, and this task is par-
ticularly important for organizations that are experimenting
with controlled dynamic pricing. Fortunately, frequent price
changes also produce frequent opportunities for measure-
ment of customer responses and, in principle, the possibility
of obtaining near real-time estimates for customer demand
models. In this paper, we develop an approach to this type
of online learning of customer behavior; that is, learning
that takes place as sales unfold. The approach works with
a discrete-time approximation to the sales process and can
be applied to learning the parameters of any demand model
that produces estimates of consumer purchase probability
at each time step of the approximation. An important aspect
of the method is that learning is integrated with pricing so
that pricing policy formation and consumer demand predic-
tion proceed concurrently.
Our approach is based on the Aggregating Algorithm

(AA)—a particularly general method for online learning
developed by Vovk (1990). To illustrate its generality, we
apply it to a model of consumer behavior that allows for
strategic consumers who know that pricing is dynamic and
may delay their purchases to times of anticipated lower

price. The possibility of such strategic behavior has been
of increasing interest recently because of the rapid growth
in information available to customers through Internet sales
channels and “price-shopper” websites. In many cases, cus-
tomers are able to monitor both prices and availabilities
of products over time and may develop accurate guesses
about a company’s future prices. Ironically, companies that
employ carefully controlled dynamic pricing may be more
vulnerable to strategic consumer behavior than companies
employing ad hoc price adjustments because controlled
dynamic pricing can lead to pricing policies with regu-
lar features; for example, monotone-decreasing prices in
situations where “price skimming” appears to be optimal
(see Besanko and Winston 1990).
Dynamic pricing is properly viewed as one approach to

the general problem of revenue management, and there is
now an extensive literature on revenue management and
related practices. For surveys, see Bitran and Caldentey
(2003), Elmaghraby and Keskinocak (2003), and McGill
and van Ryzin (1999). Broad discussions of revenue man-
agement can be found in recent books by Talluri and van
Ryzin (2004) and Phillips (2005). Many revenue manage-
ment applications depend on forecasts of consumer behav-
ior that are generated from stochastic models of demand,
for example, demand as a function of time and price.
Unfortunately, such stochastic demand-response models
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typically assume characteristics of demand that cannot be
known precisely in practice. This uncertainty in demand
characteristics has long been recognized in economics, mar-
keting, pricing, inventory management, and revenue man-
agement, and there have been efforts to develop methods
for learning of demand-response functions over time. For
example, Balvers and Cosimano (1990) study a pricing
problem with learning of demand that is a linear function
of price. The model does not consider any limits on sales
due to inventory levels. Carvalho and Puterman (2005) also
study learning and pricing when capacity is unlimited. The
authors consider a finite time horizon and focus on spe-
cific parametric forms of the customer arrival distribution
and the probability of sale (both the number of arrivals
and the actual sales are observable). The parameters are
assumed to be fixed and unknown. The authors explore a
trade-off between learning and pricing using a “one step
look ahead” heuristic based on a two-period version of
the problem. Petruzzi and Dada (2002) consider a stocking
and pricing model with a fixed but unknown perturbation
of some given demand function. Papers by Bertsimas and
Perakis (2006), Aviv and Pazgal (2005a), and Lin (2006)
study the pricing of a fixed stock of items over a finite hori-
zon with demand learning. Bertsimas and Perakis (2006)
consider learning of all demand characteristics, including
the price sensitivity, but assume a linear demand model
with normal perturbations. The other two papers assume
a known reservation price distribution. Aviv and Pazgal
(2005b) present a general framework for dynamic pric-
ing when stochastic properties of demand are affected by
the current state of the world. The number of possible
states considered by the authors is finite. They use partially
observed Markov decision processes as a modeling basis
and information-structure modification heuristics to provide
a tractable implementation. A recent work by Besbes and
Zeevi (2007) considers a joint learning and pricing method
for a network revenue management problem involving mul-
tiple products utilizing multiple resources. The approach
assumes a Poisson model with demand rates determined by
unknown functions of price. While the model of demand in
their paper is nonparametric, the authors simplify the prob-
lem by only considering demand rates that do not depend
explicitly on time (in contrast to this paper). The policies
considered involve a “brief” period of learning (experimen-
tation with prices selected from a grid of prices) followed
by static pricing. The authors establish asymptotic optimal-
ity of the policy given that the resource capacities and the
demand rates simultaneously tend to infinity.
All the learning-focused papers cited above consider

restricted forms of demand models that do not consider
potentially complex consumer behavior. The prior work on
dynamic pricing, which assumes known demand models,
has allowed for varying degrees of consumer sophistica-
tion. For example, the classical model by Gallego and van
Ryzin (1994) assumes myopic consumers who make a pur-
chase as soon as the price is below their valuation for

the product, whereas other models allow for strategic con-
sumers who may benefit by delaying their purchase deci-
sions (see Besanko and Winston 1990, Elmaghraby et al.
2008, Aviv and Pazgal 2008, Liu and van Ryzin 2008, Su
2007, and Levin et al. 2005). In the case of strategic con-
sumers, the demand model should also capture competition
between the customers if the product supply is limited.
Although the case of myopic consumers is amenable to
existing learning approaches, it is difficult to extend these
approaches to the instances of more complex consumer
behavior, in particular, strategic behavior. Indeed, one of
the typical approaches in dynamic pricing with demand
uncertainty (with or without learning) is policy optimiza-
tion by dynamic programming techniques, but the complex-
ity of demand learning with strategic consumers renders
an exact dynamic programming approach computationally
intractable.
The main contribution of this paper is the presenta-

tion of an integrated procedure to both determine prices
and estimate customer behavior under general paramet-
ric uncertainty. We accomplish this with an adaptation of
the Aggregating Algorithm (AA) of Vovk (1999). The AA
methodology belongs to the class of online methods and
was originally developed to address the problem of com-
bining expert advice (Vovk 1999). Similar techniques have
been applied to the problem of online portfolio selection
since the work of Cover (1991).
In our online approach, the company observes the sales

history over consecutive learning stages and predicts future
demand by applying the AA to a pool of stochastic predic-
tors. Numerical implementation uses finite-sample approx-
imations to the pool of predictors. These are periodically
updated using the most recent sales data and are subse-
quently altered by a random step that maintains diversity
of the predictors. This is similar to a method applied to
online portfolio selection by Levina (2004). The company’s
pricing policy is optimized by a simulation-based method
that is integrated with AA.
We illustrate the versatility of this integrated procedure

on a demand model for a complex market in which cus-
tomers are aware that pricing is dynamic, may time their
purchases strategically, and are competing for a limited
product supply. The model of consumer demand used in
this illustration is adapted from a game-theoretic, strategic
consumer-choice model described in Levin et al. (2005).
In that model, a fully rational consumer’s decision is char-
acterized as a probability of purchase at each time and
state of the sales process. Summation of these probabilities
across consumers defines the demand model. A key depar-
ture from that model in this paper is that we assume limited
rationality of consumers with respect to anticipated future
prices.
A number of structural properties of the revised

consumer-choice model are relevant to the implementa-
tion of online learning described here. In particular, we
show that strategic consumer response to price is inherently
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dependent on time and the remaining capacity of the
firm. We also show that this model supports an intu-
itively appealing decision rule for strategic consumers—
that they will attempt to purchase when their consumer
surplus from an immediate purchase is greater than the dis-
counted expected surplus from all future purchasing oppor-
tunities. The expected surplus is thus identified as a key
component of strategic consumer behavior. We then derive
important properties for the expected surplus that can be
used to construct an empirical consumer demand model.
(Such an empirical approximation is needed because exact
computation of the expected surplus, when combined with
online learning, is not practical in problems of realistic
size.) Numerical experiments demonstrate that the learning
procedure is robust to discrepancies between the detailed
strategic market response and the model of that response
used in learning.
This paper is organized as follows. In §2, we discuss

a general class of time, inventory, and price-dependent
demand models that includes the case of strategic con-
sumers. In §2.2, we outline a simple Bayesian approach to
online learning of the parameters of the general demand
model for any pricing policy. In §2.3, we discuss a spe-
cialization of the AA that implements demand learn-
ing using a general Bayesian approach with finite-sample
approximations. Pricing policy optimization is addressed in
subsequent sections. In §3, we identify restricted pricing
policy classes that are practical to implement and facilitate
dynamic pricing with demand learning. In §4, we show how
learning can be integrated with optimization of the pric-
ing policy through an online procedure that utilizes the AA
for learning and simulation-based optimization for pricing.
In §5, we discuss the application of this procedure to the
case of strategic consumers and our numerical experience
with it. We summarize the main contributions of the paper
in §6. In the online appendix to this paper, we provide
an outline of the game-theoretic strategic consumer-choice
model and its detailed analysis. An electronic companion
to this paper is available as part of the online version that
can be found at http://or.journal.informs.org/.

2. Demand Model and Its Learning

2.1. Sales Process

Consider a product with limited availability sold by a
monopolistic company over several planning horizons, each
comprising T decision periods, �0�1� � � � � T −1�. At time 0
in each planning horizon, the initial inventory of the prod-
uct is Y , with no replenishment possible during the plan-
ning horizon. All planning horizons start with the same
initial inventory. At time T � the product expires and all
unsold items are lost. We assume that the company wishes
to recompute its pricing decisions after each sale or offer
of sale, and that the sales process unfolds in an “orderly”
fashion; that is, the company presents items for sale sequen-
tially, one per time period. In each period t, a single sale

may or may not occur. This assumption of at most one
sale per decision period is a discrete-time approximation
to the continuous-time Poisson demand model frequently
assumed in revenue management literature—the probability
of more than one sale in a time period becomes negligi-
ble if we consider sufficiently short time intervals. If the
unit of time measurement equals the length of a single
decision period, then the probability of one sale in each
decision period corresponds to the demand intensity for the
entire market in this decision period. The sale probability
depends on a number of quantities, some of which may be
unknown to the company, and its exact functional form is
determined by a model of consumer behavior. In this paper,
we consider demand models in which the sale probability
is a function of time t, remaining inventory level y, and the
current price p.
The consumer behavior model is specified by a con-

stant parameter vector x that may include both known and
unknown components. The existence of a parameter vec-
tor that specifies the model is implicit whenever a spe-
cific instance of a general demand model is described. For
example, in the context of the classical dynamic pricing
model of Gallego and van Ryzin (1994), x would include
the parameters of a model of customer arrival intensity as
a function of time and parameters of the reservation price
distribution. In this paper, we expand this set to include
other parameters describing consumer behavior. The only
restriction is that the set of parameters is finite.
The resulting sales process is, then, a discrete-time

counting (Bernoulli) process with the sale probability given
by a known function 
x�t� y�p� of t ∈ �0�1� � � � � T − 1�,
y ∈ �1� � � � � Y �, and p ∈
, where 
 is a set of admissible
prices. These probabilities define the demand model.

Example 1 (Myopic Consumers). This example outlines
one particular set of assumptions that leads to a specific
form of the sale probability 
x�t� y�p�. We assume that:
(1) the consumer population is homogeneous and finite;
(2) each customer will purchase at most one item; and (3)
all customers are present in the market from the begin-
ning of the planning horizon and remain present until they
make a purchase, the company runs out of inventory, or the
planning horizon ends. For the purposes of this example,
suppose also that customers are myopic and have uncertain
valuations for the product at time t given by the random
variable B�t�. The customers cannot control the precise
timing of their purchases, but can adjust the intensity of
their efforts to acquire an item (shopping intensity in the
terminology of Levin et al. 2005). This shopping intensity
is proportional to the probability that the valuation B�t�
exceeds the current price p. We assume that the demand
intensity for the entire market is the sum of shopping inten-
sities of individual customers. Let N be the initial mar-
ket size (at the beginning of the planning horizon) and
�̄ be the maximum shopping intensity of each myopic
customer. Following the model developed in Levin et al.
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(2005), the demand intensity for this entire market (the sale
probability) will be given by


x�t� y�p�= �̄�N − �Y − y��P x�B�t�� p� (1)

when there are y items left for sale (implying that there are
N − �Y − y� customers left in the market). The vector x in
this case includes �̄ and parameters of the distribution of
B�t� and its evolution over time. In §5, we present an intu-
itively reasonable generalization of the above expression
to the case of strategic consumers. The parameter vector
is then extended to include parameters describing strate-
gic behavior. In the next section, we show how a demand
model like (1) can be used to learn the values of the ele-
ments of x�

2.2. Learning from Sales

We now assume that the company has a sale probability
model 
x�t� y�p� that describes collective consumer behav-
ior, and focus on the problem of learning the parameters x
under any pricing policy as a necessary first step toward
optimizing the pricing policy. We consider demand learning
on the basis of sales only, although exogenous informa-
tion such as the results of consumer surveys can be intro-
duced as part of a prior distribution for x. If x is known
exactly, the company can predict customer response to a
pricing policy because the probability of sale 
x�t� y�p�
then becomes a function of t, y, and p only. A key chal-
lenge in this learning process is that the demand is state
and time dependent—a condition that rules out use of many
conventional learning methods.
Assume that initial knowledge about the parameter

vector x is contained in a prior distribution, which is con-
tinuous and specified by a given density function. As addi-
tional sales information becomes available, the distribution
reflecting the company’s knowledge about x is updated to
a posterior distribution, which is also continuous. At the
beginning of decision period t� complete histories of the
sales and price processes from previous decision periods
are available. We define:
• �t as the set of decision periods during which a sale

was made, and
• �t = �p0� � � � � pt−1� as the list of all prices used

previously.
At time t, the list �t has length t, and the set �t has

cardinality Y − y, where y is the current level of inventory.
We denote the random vector distributed according to the
prior density as x�����. The parameter vector distributed
according to the posterior density at time t corresponding
to histories �t , �t is x��t��t�. The posterior density at x is
obtained (up to a normalizing constant) by multiplying the
prior density at x and the likelihood of the observed sales
history for a particular parameter value x. In the likelihood
expression, we use the auxiliary notation:
• y� = Y − ��� � is the number of units left at the begin-

ning of decision period � (note that for any t � � , y� =
Y − ��t ∩ �0� � − 1��), and

• 	�t = �0� � � � � t − 1� \�t is the set of decision periods
during which no sale was made.
The likelihood function at the beginning of decision

period t is given by

L��t��t �x�=
∏
�∈�t

x���y��p��

∏
�∈ 	�t
�1−
x���y��p���� (2)

Based on the observed histories and using the posterior
distribution, the company can estimate the probability of
future sales as a function of price paths. For example, the
probability of a sale occurring in decision period t is

d��t��t� p�=Ex��t ��t �
�
x��t ��t ��t� Y − ��t�� p��� (3)

where p is the price set by the company.

2.3. Aggregating Algorithm for Demand Learning

The previous section shows that, given an appropriate
general demand model, predicting consumer response is
reduced to estimating the parameter vector x that uniquely
specifies this model. The uncertainty in prediction and the
current state of knowledge of x is represented by a posterior
distribution for x, and learning the parameters consists in
updating this posterior distribution as sales and price infor-
mation becomes available. We refer to the time between
such updates as a learning stage. In the absence of specific
distributional assumptions, learning through updating the
posterior distribution is handled numerically using finite-
sample approximations.
To contain the growth in computational intensity of pos-

terior distribution updates as the volume of collected data
grows, we use our experience with the AA of Vovk (1999)
(see also Levina 2006). Here, we give a brief overview
of the AA to establish basic terminology. The method-
ology of AA hinges upon the notion of an elementary
predictor—any method that produces a prediction in every
learning stage. The concept of an elementary predictor is
very general; for example, it can include human “expert”
opinion, a conventional forecasting technique like regres-
sion, or the realizations of an arbitrary stochastic process
(with the value in each learning stage being the prediction).
The key is that elementary predictors produce sequences of
predictions over time. A pool � of predictors is a given
collection of such methods, and AA is a general approach
for aggregating predictions, �s���, � ∈� from a pool into
a single prediction in a given learning stage s. Each ele-
mentary predictor in the pool has a weight that reflects its
past performance. The weights at the beginning of stage s
are represented, in general, by a measure Ps−1�d�� on �.
The weights induce a probability distribution on the pool,
which is obtained by normalizing the weights to sum to
one: Ps−1�d��/Ps−1���. After stage s predictions are made,
the outcome of reality, �s , is observed, and each predictor’s
weight is updated by multiplying it by a nonnegative factor
reflecting its current performance:

Ps�d��= e−�s��s �����s�Ps−1�d���

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Levina et al.: Dynamic Pricing with Online Learning and Strategic Consumers
Operations Research 57(2), pp. 327–341, © 2009 INFORMS 331

where �s�x� �s� is a loss suffered in stage s if prediction x
is made and the outcome of reality is �s . The aggregation
into a single prediction in stage s is often accomplished
with a weighted average of predictions using the current
weights:∫
�
�s���Ps−1 �d��∫
�
Ps−1 �d��

�

but other aggregation methods are possible. In a practical
application of AA, the following components have to be
defined: the predictor pool �, the loss function, a numeri-
cal representation of the current predictor weights Ps−1�d��
and a procedure for their update, the initial weights P0�d��,
and, finally, the aggregation method. In the rest of this sec-
tion, we describe the first three components.
In our problem, we identify predictions with possible

values of the parameter vector x and use elementary pre-
dictors that, in every learning stage, alter their predic-
tions according to the realizations of a given discrete-time
Markov process on the space of parameters. (In our imple-
mentation, we draw the next realization of the process from
the mixture of two distributions: a step of Gaussian ran-
dom walk away from the current parameter values, and a
prior distribution. However, other Markov processes could
be used.) Elementary predictors of this general type, some-
times called Markov switching, have been used in other
problems to expand the pool of predictors. For example,
Levina (2004) describes their application in online portfo-
lio selection. At any point in the learning process, such a
pool � is infinite because its elements are possible future
realizations of the predictor process. The Markovian struc-
ture of predictors ensures that the current distribution of
predictions completely determines any future distribution
of predictions by the pool.
For each prediction x given by the pool, we determine

the corresponding likelihood of the sales data accumulated
since the last update. We use that likelihood as a factor
to update the weight of any predictor that makes predic-
tion x. That is, our loss function is equal to the negative
log-likelihood of the sales data obtained during the cur-
rent learning stage. This choice of update, together with
the Markovian structure, implies that the combined weight
of all elementary predictors producing prediction x is an
approximation to the posterior density at x corresponding to
observed sales data. The accuracy of this approximation is
affected by the choice of the predictor process. If alterations
in predictions from one learning stage to the next are, on
average, small (the magnitude of the random walk step is
small), then the level of “noise” introduced into the approx-
imation is also small. On the other hand, the magnitude
of the step should be sufficiently large to ensure diversifi-
cation of learning and faster exploration of the parameter
space.
Because the pool of predictors is infinite, we main-

tain their weights in the form of a finite-sample approxi-
mation to the distribution of predictions. Specifically, the

proportion of a finite sample of predictions that fall in
a particular area of the parameter space approximates
the combined weight of all elementary predictors that
deliver predictions in that area. An accept-reject bootstrap-
resampling procedure (described in the online appendix)
approximates the weight update by ensuring that predic-
tion sample points with greater likelihood are sampled with
proportionally higher probability. The resulting updated
sample represents new weights of predictors in the pool.
Of course, the resulting sample will have many duplicate
points because of the bootstrap feature. However, even if
two predictors provide the same parameter vector at the end
of the current learning stage, the probability that their pre-
dictions will be identical in the next stage is zero because
predictors correspond to realizations of Gaussian random
walk.
Our choice of initial weights P0�d��, which correspond

to a prior distribution, is uniform on a rectangular set in
the parameter space.
The final component, aggregation, does not have to pro-

vide a single prediction of the parameter vector in our
case. On the contrary, the uncertainty in current predictions
provides valuable information for pricing because we can
make the pricing policy more robust by taking this uncer-
tainty into account. Thus, in our application, predictions are
aggregated by passing individual sample elements to the
policy optimization procedure. Before providing the state-
ment of the integrated learning-policy optimization algo-
rithm, we discuss policy class restrictions.

3. Implementable Pricing Strategies:
Policy Class Restriction

The company’s objective is to maximize its expected rev-
enues by selecting an optimal pricing policy from an
appropriate class. If x is known, the probability of sale

x�t� y�p� is a function of t� y� and p only. Then, the state
of the system at each time t can be described by the cur-
rent inventory level y, and one can solve the problem using
dynamic programming with pricing policies of the form
p = p�t� y�. If even a single component of the parameter
vector x is unknown, a state description of the form �t� y�
is inadequate. Indeed, any control problem with unknown
parameters belongs to a class of problems with imperfect
information, well known for their difficulty. In the present
case, the difficulty arises because not only the time t and
the current inventory level Y − ��t�, but the entire history,
affect the probability of a sale given in (3). Consequently,
the optimal price will also depend on the histories; that is,
p = p��t��t�. Obtaining an optimal policy of this form,
even for a moderately sized problem, is computationally
intractable (at least in the general case) due to the size of
the state space.
This motivates us to consider policies in the class

p = p�t� y�, while assuming that the company would like
to maximize total expected revenues until the end of each
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planning horizon. Expectations must be taken both over all
possible sales paths and over the most recent parameter dis-
tribution update. Policies of the form p= p�t� y� have been
common in the dynamic pricing literature since Gallego
and van Ryzin (1994). Note that under this policy structure,
the price path �t can always be computed from the sales
path �t because

pt = p�t� Y − ��t��� (4)

Denote the price path corresponding to the sales history
�t and policy p�·� as �t�p�·���t�, and the corresponding
revenues as

R�p�·���t�=
∑
�∈�t

p��� Y − ��t ∩ �0� � − 1����

Also, let �� denote the set of all sales histories �t termi-
nating in either a sold-out condition ��t� = Y or the end-
of-horizon condition t = T . Then, maximization of total
expected revenues can be expressed as

max
p�·�
Ex�����

[ ∑
�t∈��

R�p�·���t�L��t��t�p�·���t� �x������
]
�

(5)
The inner sum in (5) corresponds to the expectation over
all possible sample paths conditional on the value of
the parameter vector. The exact (either numerical or ana-
lytic) computation of this objective function is difficult in
most situations. We remark, however, that such an objec-
tive function is amenable to an approximate computation
through simulation. Moreover, for each fixed pricing pol-
icy, the simulation procedure is straightforward and can be
accomplished by drawing a sufficiently large number of
samples as follows:
(i) simulate a parameter vector from x�����, and
(ii) conditional on the value of the sampled parameter

vector, simulate a sales path using 
x�t� y�p� as probabil-
ities of sale.
The objective function is then computed as the sample

average of revenues corresponding to all simulated sample
paths. The average over repetitions of Step (i) corresponds
to taking the outer expectation in (5), and the average over
step (ii) evaluates the inner sum in (5).
We seek to determine the policy of the firm that max-

imizes (5). However, we have to restrict our search to
classes of policies that can be described by a small num-
ber of continuous variables. We do so in order to use the
DFO algorithm (see Conn et al. 1997), a general derivative-
free optimization method that can handle “noisy” objective
functions. Such a method is required because the objec-
tive function is computed by simulation, and its derivatives
are not readily available. Subclasses of policies that can be
described by only a few variables are, for example:
(1) an open-loop policy, for which price depends on

time only and remains fixed on each of m prespecified
partitions of �0�1� � � � � T − 1� (this policy is described by
m variables);

(2) an open-loop, single-threshold policy, for which the
price on each of m partitions depends on whether the
inventory y exceeds a fixed threshold y∗ (described by
2m variables);
(3) a single-threshold linear policy, whose variables are

coefficients of two linear functions of time p1�t�= v1+w1t
and p2�t�= v2 +w2t, such that the price is p1�t� if y � y

∗

and p2�t�, otherwise (described by four variables);
(4) a single-ratio threshold linear policy that is similar

to the previous one except for a threshold of the ratio form
y/�T − t�� # for some fixed #� 0.
In numerical experiments provided later, we confine our-

selves to policies in these classes. We note that, aside from
computational tractability, policies of this type are also
more easily implemented than more general policies.

4. Integrated Learning and
Pricing Policy Optimization

The current state of knowledge about the demand model is
represented by the posterior distribution of model parame-
ters as described in §2. The specialization of the AA given
in §2.3 keeps a finite-sample approximation of the posterior
distribution up to date. On the other hand, as shown in §3,
policy selection is naturally accomplished by a simulation-
based optimization method that requires a sample from
the posterior. Thus, we integrate learning with optimiza-
tion by using the sample of predictions produced by AA
inside the policy optimization. This step replaces a direct
aggregation of predictions by averaging their contributions
to simulation-based calculation of a new optimal policy.
A schematic representation of our procedure, its main steps,
and corresponding changes in the sample of predictions for
a single learning stage are shown in Figure 1.
An entire learning process unfolds as follows. We fix the

maximum number of decision periods in a single learning
stage: a number S between 1 and T (periodicity). With peri-
odicity of one, distribution updates occur after every time
step (online), whereas with periodicity of T , they occur
after the completion of a sales season (offline). Moreover,
because a fully online mode may suffer from excessive
computational overhead, we consider intermediate situa-
tions (1< S < T ), in which learning occurs multiple times
per planning horizon, but not as frequently as every deci-
sion period. A distribution update also occurs at the end
of the planning horizon or if all items are sold out. The
process begins with an initial sample from the prior distri-
bution. Then, for each time horizon, the process:
(1) recomputes the pricing policy until the end of the

current horizon using a simulation-based optimization of
the objective in (6);
(2) observes the sales for up to S decision periods, or

until the end of horizon is reached, or all items are sold;
(3) updates the finite-sample approximation to the pos-

terior parameter distribution using bootstrap resampling;
(4) alters the parameter sample using a random Markov

step;
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Figure 1. Main steps of the integrated learning-policy
optimization procedure.

Sample of predictions

Simulation-based
policy optimization

Sales data collection

Accept-reject bootstrap resampling

Likelihood function

Pricing policy

Markov step

Updated sample

Altered sample

(5) if the end of horizon is reached, or all items are sold,
moves to the next time horizon; and
(6) returns to Step 1.
We next provide some details of the resulting numer-

ical procedure by concentrating on its three components:
simulation-based pricing policy optimization, finite-sample
posterior distribution update, and sample alteration by a
random Markov step. Additional implementation informa-
tion is provided in the online appendix.
In this procedure, the pricing policy is recomputed after

each update of the posterior distribution. When the policy
is recomputed at an intermediate point t′ of the plan-
ning horizon, the objective function (5) has to be mod-
ified by taking into account the expected revenues over
�t′� T � only, and by replacing the prior distribution x�����
with the posterior �x= x��t′ ��t′�p

′�·���t′�� corresponding
to the observed histories �t′ ��t′�p

′�·���t′� obtained under
the previous policy. The modified objective is to maximize
future expected revenues:

max
p�·�
E�x

[ ∑
�t∈��&�t∩�0� t′−1�=�t′

�R�p�·���t�

−R�p′�·���t′��
L��t��t�p�·���t� � �x�
L��t′ ��t′�p′�·���t′� � �x�

]
� (6)

where R�p′�·���t′� represents past revenues (a constant),
L��t��t�p�·���t� � �x�/L��t′ ��t′�p′�·���t′� � �x� represents
the portion of the likelihood corresponding to the future

segment of the sales and price process histories, and p�·� is
a future pricing policy (coinciding with p′�·� up to time t′).
Because an analytic calculation of the objective (6) is

impossible in general, we use numerical approximation via
Monte Carlo integration over the most recent posterior den-
sity and the future sales process paths. The two-step sim-
ulation approach to objective evaluation has been outlined
in §3. In that procedure, the first step involves sampling
parameter vectors. The key to computational efficiency of
the integrated learning and policy evaluation procedure is
that this sample is already available from the AA. It is only
necessary to simulate the sample paths using a given pric-
ing policy and the probabilities of sale corresponding to
sample elements.
The second component of the integrated procedure, the

finite-sample posterior distribution update, is handled by
bootstrap resampling, which may result in many duplicates
in the updated sample, particularly for highly weighted pre-
dictors. However, the third component, sample alteration,
breaks up ties between different sample points. A reason-
able choice for the elementary predictors of the Markov
switching type are realizations of Gaussian random walks
with a step of mean zero. The standard deviation parameter
of the step can be used to adjust the average magnitude of
the step. To make the method more robust to changes in the
environment, we also allow occasional “restarts”—a small
(random) number of vectors in the new sample are sampled
from a prior distribution rather than from a random walk
around the value from the old sample.
The resulting learning procedure can be viewed from a

genetic algorithm perspective. The sample represents a pop-
ulation of parameter vectors. The fitness of each parameter
vector is the likelihood of the observed sales and price his-
tory given this parameter vector. The number of offspring
of the vector in the new sample is proportional to its fitness.
Each offspring also undergoes a mutation. This mutation
is usually small (Gaussian random walk), but sometimes
a strong deviation from the parent point appears (reset to
a prior distribution). This achieves diversity in the sample
and an appropriate trade-off between exploitation of previ-
ous good values and exploration of new ones.
In many settings, it is possible to construct a learning

system using the general approach of reinforcement learn-
ing (see, for example, Sutton and Barto 1998)—a method-
ology closely related to Markov decision processes and
focused on estimation of a value function. However,
reinforcement learning methods typically depend on the
assumption that the “environment” is time stationary. In the
case of dynamic pricing, the key component of the environ-
ment is consumer demand and because the demand models
considered by us are inherently nonstationary within each
planning horizon, an application of value-function-based
reinforcement learning techniques becomes particularly dif-
ficult. Generally, any method based on directly learning the
optimal pricing policy is likely to be inappropriate for a
dynamic pricing problem with an unknown demand model
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if consumer response to a policy is time and state depen-
dent. Such methods require the whole planning horizon to
collect the sales data needed to evaluate the performance
of a single pricing policy. Moreover, after observing the
effects of a given policy, it is impossible to know the perfor-
mance of other policies until new sales data are collected.
On the other hand, a prediction approach does not pose
the same difficulty because it is possible to form alterna-
tive predictions of the customer response to a given pric-
ing policy and to simultaneously evaluate how they match
the observed data. Therefore, we have chosen to formu-
late learning in terms of improving predictions of customer
response to selected pricing policies.
Next, we report our numerical experience with this

integrated learning-optimization procedure. We specify the
demand models used in §§5.1 and 5.2 and report the results
of computer simulations of the learning process in §5.3.

5. Application: Markets with Strategic
Consumers

Myopic customers compare the current price with their val-
uation and make a purchase if their valuation exceeds the
price; that is, as soon as their current consumer surplus
is positive. They disregard future prices or product avail-
ability. In contrast, a strategic customer will compare the
current purchasing opportunity to potential future oppor-
tunities and decide whether to purchase now or to wait.
A model that captures strategicity of customers should
therefore specify customer beliefs about future product
prices and availability.
In this section, we apply the general learning method-

ology to a demand model that captures such strategic
behavior.

5.1. Demand Model That Captures
Consumer Strategicity

The demand model for strategic consumers is based on
a game-theoretic consumer-choice model of Levin et al.
(2005) that leads to specific forms for the sale probabil-
ity 
x�t� y�p�. In the online appendix, we present a set of
assumptions ensuring that all of the information necessary
for a customer to form his beliefs at time t is contained in
the current inventory level y, price p, and, perhaps, some
additional constant parameters. The assumption that cus-
tomers can observe the remaining inventory is reasonable in
many settings. For example, users of online travel-booking
websites can view aircraft layouts showing available seats,
and many online booksellers and other retailers show the
number of items remaining in stock.
We extend the basic setup of Example 1 to the case

of strategic customers as follows. A customer with valu-
ation b who makes a purchase at price p, evaluates it in
terms of the surplus b − p. The value of the surplus for
an item purchased in the future is discounted by a fac-
tor ( ∈ �0�1� per time period, which can be interpreted as

the degree of strategicity of the customer. This is a natu-
ral interpretation because customers with (= 0 will place
no value on future surpluses (behave myopically), whereas
customers with (> 0 will consider the possibility of future
surpluses (behave strategically). Because the population
is homogeneous, market participants (company and cus-
tomers) need to track the number of remaining customers
n= N − �Y − y� to make optimal strategy decisions. This
is relatively easy for companies that are monitoring “hits”
to their website, but consumers may have to rely on the
speed at which the inventory is dropping to estimate the
total number of customers.
In this paper, we also make a key simplifying assump-

tion that customers’ rationality is limited, and they treat the
future price realizations as random values (moves of nature)
rather than as values strategically selected by a rational
player (the company). Specifically, we assume that they
use a common anticipated price process p̃�t�, which is a
Markov process on 
 with finite expectation for all t. The
initial value of this Markov process at time t is the last
price seen by the customers. That is, if the company uses
price p at time t, the distribution of prices anticipated by
the customers at time t+ 1 is that of �p̃�t+ 1� � p̃�t�= p�.
This model of consumer anticipation with respect to future
prices has been used, for example, by Assuncao and
Meyer (1993). The customers still treat each other as ratio-
nal participants in the resulting stochastic dynamic game.
There are several simple models that satisfy the Markovian
assumption. For example, the p̃�t�s can be independent for
different t. Alternatively, when the set of feasible prices

 is discrete, we can assume (as we do in our bench-
mark numerical examples) that p̃�t� is a random walk with
probability q of moving to the next-higher value in 
, prob-
ability r of moving to the next-lower value in 
, and prob-
ability 1 − q − r of staying at the same value. Once the
walk reaches an extreme value in 
, it can only stay con-
stant or move to interior values; that is, it will stay constant
with probability 1− r if it is at a maximum, or probability
1 − q at a minimum. This model of beliefs about prices
assumes customer knowledge of the set 
. If 
 is a con-
tinuous set, the assumed knowledge of possible prices is
simply the minimum and maximum of an interval. In the
case of discrete prices, customers can often guess likely
prices. For example, it is quite common in retail sales to
use prices of the form $99�$109�$119�$129� � � � or dis-
counts of the form 5%�10%�15%� � � � , and consumers are
well aware of this.
Let Sx�t� y�n�p� denote the expected present value of

the customer surplus at time t given the knowledge of y, n,
and the price p used by the company in the previous
decision period and before the current period’s price is
observed. In the online appendix, we derive the following
generalization of (1):


x�t� y�p�= �̄�N − �Y − y��P x�B�t�� p

+(Sx�t+ 1� y�N − �Y − y��p��� (7)
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The quantity (Sx�t + 1� y�N − �Y − y��p�, interpreted as
the present value of the expected future surplus at time t,
captures the effects of consumer strategicity on demand:
it can be viewed as adjusting consumer reaction to price
relative to the myopic case. Note that, aside from the val-
uation distribution, the sale probability given by (7) only
requires knowledge of the adjustment term (Sx�t + 1� y�
N − �Y − y��p�. For learning purposes, the value of the
adjustment term can be modelled with a detailed consumer-
choice model such as the one presented in the online
appendix, or an empirical approximation (to be discussed
below). In either case, the parameter vector x of Example 1
must be extended with the parameters of the corresponding
model.
Although we assume that customers’ behavior is con-

sistent with knowledge of the vector x, the company will
typically not have information about at least some of its
components. However, the company may possess prior esti-
mates for some of these parameters through, for example,
consumer surveys. Such estimates can be introduced natu-
rally to the learning process as part of a prior distribution
for x.

5.2. Empirical Model for the Discounted
Expected Surplus

When the assumptions underlying the consumer-choice
model hold, we can view a company’s learning process
as a gradual improvement of knowledge of all unknown
model parameters in x. This corresponds to learning �̄, (,
the distribution Ft�·� of B�t� for each time t, and the set of
parameters that determine the behavior of the anticipated
price process p̃�t�. Although this may be possible in princi-
ple, it is unlikely to be computationally feasible in practice
with problems of realistic size; thus, approximations are
required.
One obvious approximation is to replace the freely time-

varying valuation distributions Ft�·� with a constant distri-
bution F �·�� or introduce a model for the time variation.
In our numerical experiments, we use the constant distri-
bution approximation. Now, because the sale probability
given by (7) only requires knowledge of the adjustment
term (Sx�t+1� y�N − �Y −y��p�, we can replace learning
of the remaining parameters in x with simply learning the
parameters of an approximation to this adjustment term.
We will call such an approximation an empirical model
for strategic consumers. In selecting the form of an empir-
ical model, it is important to understand typical charac-
teristics of (Sx�t + 1� y�N − �Y − y��p� as a function of
time t, remaining inventory y, and price p. The structural
results derived in the online appendix provide some guid-
ance in selecting the empirical model. Numerical examina-
tion of typical behavior of (Sx�t + 1� y�N − �Y − y��p�
resulting from the consumer-choice model can also assist
in selection.

Based on the structural results, we may expect the
expected surplus Sx�t� y�N − �Y − y��p� to be a decreas-
ing function of t and an increasing function of y, and
the expression p+ (Sx�t + 1� y�N − �Y − y��p� to be an
increasing function of p. Two additional properties are dif-
ficult to prove in general, but are both intuitively reasonable
and supported by numerical experiments. Although this has
not been proved as a structural result, we may expect from
standard “decreasing marginal return” considerations that
the expected surplus will typically be concave in t and y. In
addition, if the future prices anticipated by the customers
increase monotonically in the last price observed by them,
then it is reasonable to expect that the expected surplus
is decreasing in prices, and drops to nearly zero when the
price is high enough.
All of these dependencies are indeed present in the

following numerical illustration of the expected surplus
determined by the detailed consumer choice model. The
parameters used in the choice model are:
• initial inventory Y = 20,
• initial number of customers N = 30,
• planning horizon T = 200,
• �̄T = 4, (= 1,
• valuation distribution Normal�4�2�,
• a discrete set of 50 prices �0�2�0�4� � � � �10�, and
• a random walk with probability 0�05 of moving higher

or lower than current price on this price set as an antici-
pated price process model.
The top three plots in Figure 2 show the graphs of

expected surplus Sx�0� y�N − �Y − y��p� at time 0 for dif-
ferent levels of inventory y as functions of price p and
for different prices p as functions of inventory y, as well
as of Sx�t� Y �N �p� as functions of time t for different
prices p. The expected surplus is, approximately, hyper-
bolic as a function of price; linear increasing as a function
of inventory, and tail negative exponential as a function of
time. This, together with properties outlined above, moti-
vates the following empirical model to approximate the dis-
counted expected future surplus term in the sale probability
model (7):

S̃a� b� c�d�t� y�N − �Y − y��p�

= c
(
1+d y

Y

)√�1−p/max
�2 + a2 − a√
1+ a2 − a

× 1− e−b�1−t/T �
1− e−b � (8)

This model approximates the effects of many of the
parameters in the detailed consumer-choice model;
namely, (� and the set of parameters for the anticipated
price process p̃�t�. Estimation of the parameter vector x is
thereby simplified to estimation of the four parameters a,
b, c, d in the empirical model plus the parameters of the
valuation distributions B�t�.
Examination of graphs of S̃a� b� c�d�0� y�N − �Y − y��p�

and of S̃a� b� c�d�t� Y �N �p� for parameter values a= b= 2�
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Figure 2. Expected surplus and its empirical model: Graphs of S�0� y�N − �Y − y��p� as functions of price p for
different inventory levels y, and as functions of inventory y for different prices p, as well as the graphs of
S�t� Y �N �p� as functions of time t for different prices p.
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c= 2, d= 0�6 (three bottom plots in Figure 2) confirms that
the empirical model exhibits behavior sufficiently similar
to that of the consumer-choice model to justify its use as
an approximation in our numerical experiments. Clearly, in
any specific application, more elaborate models could be
devised to accomplish this approximation.

5.3. Results of Computer Simulations

In this section, we numerically examine the effects of
strategic consumer behavior in a learning environment. We
assume that the actual customer population behaves accord-
ing to the consumer-choice model discussed in the online
appendix, which leads directly to the probability of sale
of the form (7). The numerical parameter values are the
same as in §5.2, with the exception of the valuation distri-
bution mean, the population size N , the initial inventory Y ,
and the time horizon T . The company, however, can only
use an empirical model of the form (8) to adjust for con-
sumer behavior. The pricing policy of the company in these
experiments belongs to one of three classes: open-loop,
single-threshold linear, and single-ratio threshold linear.
The policies are otherwise unrestricted and can give rise to
arbitrary nonnegative prices in a given time interval (not
only in the set �0�2�0�4� � � � �9�8�10�0� used for the ran-
dom walk model of the anticipated price p̃�t�). Therefore,
in simulation of customer behavior, we approximate the
expected surplus for general price p by the expected surplus

for the highest price from �0�2�0�4� � � � �9�8�10�0� less than
or equal to p. The size of the sample of parameter vectors
is K = 10�000. In each evaluation of the function (6), we
only use 10% of the sample of parameter vectors (selected
randomly, with replacement) and, for each vector sampled,
we generate a single sales realization. This decreases the
accuracy of approximation in each particular function eval-
uation, but may be unimportant overall, because the opti-
mization algorithm used in our experiments (DFO) creates
an interpolation model of the simulated function.
In the first experiment, Y = 100, N = 150, and

T = 1�000 over 20 planning horizons. Updates are done
“offline” (one distribution update per planning horizon). In
this experiment we compare the performance of the learn-
ing algorithm under two scenarios. In an “uninformed” sce-
nario, the company only tries to learn the parameters of
the valuation (mean and standard deviation for the normal).
In an “informed” scenario, the company is aware that cus-
tomers may behave strategically and also tries to learn the
four parameters of the empirical model. The a, b, c, d prior
distribution under this scenario is uniform over the four-
dimensional hyperrectangle �0�01�10�2 × �0�10�2. In both
scenarios, the prior for the valuation mean is uniform on
�2�8� whereas the prior for the valuation standard deviation
is uniform on �0�5�3�. All other parameters are assumed
to be known. The distribution of the switching step in the
parameter sample update is Gaussian (truncated so that the
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Figure 3. Average observed revenues as a fraction of
the optimal revenues for the true model over
10 replications of 20 consecutive planning
horizons with offline learning and Y = 100,
N = 150, and T = 1�000.
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resulting parameter vector remains within the support set
of the prior distribution). The steps for different parameters
are independent with zero means and standard deviations
of 0.05. The probability that a vector is reset back to the
prior distribution is 0.001. The true valuation distribution
is Normal�4�2�. In this experiment, the pricing policy of
the company is in the single-threshold linear class with a
threshold at 50. Figure 3 shows each respective planning
horizon’s total revenue as a fraction of the optimal expected
revenues for the detailed customer behavior model (com-
puted by the standard dynamic programming approach).
The results are averaged over 10 replications. We see that
the performance of an informed company quickly domi-
nates the performance of an uninformed company. Overall,
the average performance for the informed scenario is 98.2%
of the optimal expected revenue, and the performance for
the uninformed scenario is 96.4%.
In the second experiment, we examine the effect of learn-

ing periodicity on the algorithm’s performance. We increase
the number of replications to 40, but decrease the scale
of the example to Y = 20, N = 30, and T = 200. With
this many replications, differences in average performance
greater than 1.7% are significant at the 5% level (based on
a one-sided t-test, and given the observed standard devi-
ations). This also applies to subsequent experiments. The
true valuation distribution remains Normal�4�2�. We com-
pare the same two learning scenarios, but with different
values of periodicity: every 20, 40, 100, and 200 decision
periods (10, 5, 2, and 1 distribution updates and policy cal-
culations per planning horizon, respectively). The switch-
ing distribution’s standard deviation is scaled by the square
root of (T /periodicity), and the reset probability is divided
by (T /periodicity). Two pricing policies are tested: single-
threshold linear with a threshold at 10, and an open-loop
policy in which the entire time horizon is partitioned into
five equal subintervals and the price remains constant in
every subinterval. The two policies are labelled TL10 and
OL5, respectively. Each policy is recalculated after every

Table 1. Average observed revenues for TL10 and OL5
policies as a fraction of the optimal expected
revenues for the true model ± standard devia-
tion of the average of this fraction per replica-
tion for two scenarios in the case of Y = 20,
N = 30, T = 200, and varied periodicity.

Policy Periodicity Informed Uninformed

TL10 20 0�988± 0�028 0�950± 0�025
TL10 40 0�981± 0�030 0�946± 0�026
TL10 100 0�981± 0�024 0�962± 0�023
TL10 200 0�948± 0�027 0�960± 0�034

OL5 20 0�991± 0�028 0�973± 0�032
OL5 40 0�994± 0�029 0�971± 0�031
OL5 100 0�976± 0�021 0�973± 0�029
OL5 200 0�973± 0�035 0�976± 0�033

distribution update. Although an open-loop policy does not
depend on the inventory level explicitly, its recalculation
after a distribution update allows the company to incorpo-
rate a limited form of state feedback. Table 1 presents the
average of the observed revenues in all planning horizons
and all replications as a fraction of the optimal expected
revenues for the true model, together with the standard
deviation of the average of this fraction per replication.
We see that decreasing periodicity (that is, making learn-
ing more frequent) significantly increases the average per-
formance for the informed scenario to the point that it
approaches 99%. On the other hand, under the uninformed
scenario, the gap in performance (of about 3.5% and 2%
of the optimum for TL10 and OL5 policies, respectively)
persists and does not close with increasing periodicity of
learning. This illustrates the importance of having an appro-
priate (even if not absolutely accurate) model of consumer
demand in the online learning framework. A slight advan-
tage of the uninformed company when periodicity is 200
(offline mode) can be explained by the gain in learning effi-
ciency in the first few time horizons when the number of
parameters is smaller.
Although the gap of 2%–4% between the informed and

uninformed scenarios is significant, it is interesting to know
what factors may affect it, and whether it can be larger. As
we have already pointed out, a marketplace with strategic
consumers results in a nonstationary and state-dependent
demand intensity. Our model reflects this in the time-
and state-dependent form of the expected surplus, which
is completely ignored by an uninformed company. The
expected consumer surplus starts at some large value in the
beginning of the planning horizon and subsequently drops
to zero at the end. Equation (7) reveals that any particular
price will result in larger demand at the end of the horizon
than at the beginning. This is because, at the end of the
horizon, there is a higher chance that the valuation-price
difference will exceed the (smaller) present value of the
surplus. Thus, one may expect the performance gap to be
larger when the maximum value of the surplus at typical
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price levels is larger. The two factors that may significantly
affect the maximum surplus are the uncertainty of the val-
uation relative to its constant part (represented by the coef-
ficient of variation CV = 3/4), and the availability of the
product. Note that the constant part of the valuation distri-
bution is typically incorporated in the overall price and is
not likely to affect the maximum surplus observed during
the planning horizon. We next compare the performance of
the open-loop policy with five intervals (OL5) under the
informed and uninformed scenarios, two periodicity val-
ues (40 and 200), two values of the coefficient of variation
(0.5 and 1, corresponding to different valuation means 4
and 2 but the same standard deviation of 2), and two lev-
els of the initial inventory (20 and 30). All other settings
are the same as in the previous experiment. The averages
and the standard deviations of the revenues per replication
as a fraction of the optimum are presented in Table 2. In
this experiment, we focus on the long-term performance
and exclude the first time horizon in every replication. The
results confirm our intuition. The performance gap between
the two scenarios increases with an increase in the relative
uncertainty in the valuation and with the initial inventory.
We also note that the standard deviation of the performance
ratio increases with the relative uncertainty in the valuation.
This is natural because demand becomes less predictable
when the uncertainty in the valuation is higher. The most
difficult situation is Y = 30 and coefficient of variation
CV = 1 for either scenario. However, the uncertainty of
results and performance deterioration is particularly high
for an uninformed company. It is also interesting to note
that more frequent learning leads to deterioration of per-
formance in the uninformed case. This is most likely due
to the phenomenon of “overfitting” of the myopic model
to the sales data during a particular segment of the plan-
ning horizon. The myopic model fitted, for example, in the
beginning of the planning horizon will be inadequate for
prediction at the end of the planning horizon.

Table 2. Average observed revenues (excluding the first
horizon) for OL5 policy as a fraction of the
optimal expected revenues for the true model
± standard deviation of the average of this
fraction per replication for two scenarios in
the case of N = 30, T = 200, and varied peri-
odicity, Y and the valuation’s coefficient of
variation CV .

Y CV Periodicity Informed Uninformed

20 0�5 40 1�000± 0�030 0�971± 0�031
20 0�5 200 0�989± 0�035 0�979± 0�031
20 1�0 40 0�986± 0�034 0�935± 0�052
20 1�0 200 0�969± 0�037 0�952± 0�069
30 0�5 40 0�989± 0�041 0�907± 0�049
30 0�5 200 0�993± 0�030 0�945± 0�028
30 1�0 40 0�981± 0�045 0�865± 0�064
30 1�0 200 0�964± 0�045 0�883± 0�062

The next experiment examines the sensitivity of perfor-
mance of the learning procedure to the parameters of the
predictors. Specifically, we examine whether the restart of
the predictor to a vector drawn from the prior distribution
adds any value, and what the effects of the magnitude of the
switching step are. The overall setup is similar to the pre-
vious experiment, but we only examine a valuation mean
of 2 (CV = 1) and an inventory level Y = 20. In addition
to the informed and uninformed scenarios and periodici-
ties of 40 and 200, we examine: the setup with no restarts,
and two setups with restarts where the magnitude of the
switching step was on the average five times higher and five
times lower than in the previous experiment. The results
are presented in Table 3 where, for convenience, we also
include lines 3 and 4 of Table 2. We see that the absence of
restarts does not significantly affect the performance in the
informed scenario (the difference in averages is less than
1%), but makes the method less robust in the uninformed
scenario where the company’s model of demand is less ade-
quate. On the other hand, under the uninformed scenario, a
smaller magnitude of the switching step reduced the prob-
lem of overfitting (and the larger magnitude increased it).
The performance in the informed scenario is more robust
to the predictor selections due to a more adequate model.
It is also interesting to see how policy selection affects

performance. Using the consumer-choice model parameters
as in the previous experiment and the default predictors,
we examine the following policies: the open-loop policy
with two prices (OL2), the single-threshold linear policy
with thresholds 5, 10, and 15 (TL5, TL10, and TL15), and
the single-ratio threshold policy with thresholds 0�75Y /T ,
Y /T , and 1�25Y /T (RTL0.75, RTL1.0, RTL1.25). The
results of these runs are summarized in Table 4. Again, for
comparison purposes, lines 3 and 4 of Table 2 are repeated
in this table. First, we see that the OL2 policy results in
performance deterioration in the uninformed case compared
to the OL5 policy showing that two prices are insufficient.

Table 3. Average observed revenues (excluding the first
horizon) for OL5 policy as a fraction of
the optimal expected revenues for the true
model ± standard deviation of the average of
this fraction per replication for two scenar-
ios in the case of Y = 20, N = 30, T = 200,
CV = 1, varied periodicity, and various pre-
dictor selections.

Predictors Periodicity Informed Uninformed

Default 40 0�986± 0�034 0�935± 0�052
Default 200 0�969± 0�037 0�952± 0�069
No resets 40 0�995± 0�039 0�925± 0�066
No resets 200 0�968± 0�038 0�937± 0�061
Smaller switches 40 0�979± 0�040 0�955± 0�052
Smaller switches 200 0�973± 0�038 0�956± 0�052
Larger switches 40 0�978± 0�038 0�894± 0�045
Larger switches 200 0�955± 0�035 0�922± 0�051
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Table 4. Average observed revenues (excluding the first
horizon) for different policies as a fraction
of the optimal expected revenues for the true
model ± standard deviation of the average of
this fraction per replication for two scenar-
ios in the case of Y = 20, N = 30, T = 200,
CV = 1, and varied periodicity.

Policy Periodicity Informed Uninformed

OL2 40 0�975± 0�051 0�853± 0�054
OL2 200 0�981± 0�041 0�904± 0�064
OL5 40 0�986± 0�034 0�935± 0�052
OL5 200 0�969± 0�037 0�952± 0�069

TL5 40 0�997± 0�033 0�980± 0�032
TL5 200 0�976± 0�040 0�964± 0�038
TL10 40 0�990± 0�045 0�960± 0�034
TL10 200 0�968± 0�047 0�958± 0�041
TL15 40 0�981± 0�038 0�930± 0�041
TL15 200 0�973± 0�042 0�959± 0�035

RTL0.75 40 0�984± 0�037 0�979± 0�036
RTL0.75 200 0�989± 0�034 0�985± 0�035
RTL1.0 40 0�974± 0�033 0�947± 0�035
RTL1.0 200 0�970± 0�029 0�945± 0�038
RTL1.25 40 0�969± 0�037 0�929± 0�038
RTL1.25 200 0�956± 0�034 0�905± 0�055

The policies of the RTL type show a better performance for
a smaller threshold value 0.75, whereas the policies of the
TL type show a better performance for a threshold of 5. The
overall “winner” appears to be TL5. For both periodicities,
a smaller threshold (resulting in a dramatic price change
for lower values of inventory) leads to better performance.
This can be explained by the need for greater control over
prices near the end of the planning horizon when there are
usually only a few items left in the inventory. The end of
the horizon is especially important because the expected
customer surplus is quite low and the remaining few items
can collect much higher prices than in the beginning of the
season. On the other hand, if sales were not very active,
and there are many items left in the inventory, the com-
pany will prefer to keep prices low. If the threshold is high,
it simply pushes prices higher too early. We also see that
the performance gap between the informed and uninformed
scenarios persists across all policy types.
In all of the above experiments, we see that an informed

company, even one using an approximate empirical model,
has a significant advantage over an uninformed one. As an
additional robustness test, we examine what happens if cus-
tomer perceptions of the pricing policy change from one
planning horizon to the next. This partially relaxes the
assumption of the constant parameter vector x. In the first
robustness experiment, we assume that the parameters q, r
of the anticipated price process (initially equal to 0.05) are
perturbed from one planning horizon to the next using a
Normal�0�0�02� random step truncated so that the resulting
values satisfy q, r � 0 and q+r � 1. This random perturba-
tion in parameters results in approximately 4% variability

Table 5. Drift in the random walk parameters: average
observed revenues (excluding the first horizon)
for OL5 policy as a fraction of the optimal
expected revenues for the true model ± stan-
dard deviation of the average of this fraction
per replication for two scenarios in the case of
Y = 20, N = 30, T = 200, CV = 1, and varied
periodicity.

Periodicity Informed Uninformed

40 0�993± 0�032 0�929± 0�060
200 0�977± 0�038 0�912± 0�064

in the optimal expected revenues between consecutive plan-
ning horizons. The results of the experiment using the OL5
policy, Y = 20, N = 30, T = 200, CV = 1 and default
predictor settings are presented in Table 5. We do not see
deterioration in performance in the informed case while
the gap between the informed and uninformed scenarios
increases. This shows that the learning procedure is suffi-
ciently flexible to handle moderate random changes occur-
ring in the marketplace.
In the second robustness experiment, similar to the previ-

ous one, we examine what happens if customer perceptions
of the pricing policy change in a systematic fashion. The
customers adjust their values of q and r from one time hori-
zon to the next using the exponential smoothing formulas

q &= 5 �q+ �1−5�q�
r &= 5r̂ + �1−5�r�
where 5 = 0�1 is a smoothing coefficient, and �q, r̂ are
the estimates based on the complete price history �t∗ =
�p1� p2� � � � � pt∗� in the current time horizon. Specifically,

�q = 1

t∗�p

t∗∑
t=1
�pt −pt−1�+�

r̂ = 1

t∗�p

t∗∑
t=1
�pt−1 −pt�+�

where �p = 0�2 is the step size of the price grid. These
estimates satisfy the relation that the total up and down
changes in the price process are equal to the expected up
and down changes t∗�pq and t∗�pr , respectively, in the
value of the random walk with step �p. Such systematic
changes in the random walk parameters constitute a limited
case of customer learning. The results of the experiment
are presented in Table 6. Again, we do not see a deteri-
oration in performance in the informed case while there
is a larger gap between informed and uninformed cases.
Thus, the demand learning procedure can also handle some
degree of customer learning.
As a final robustness test of the learning procedure, we

examine its performance for the case of unknown �̄. Specif-
ically, we assume that the company has a prior on �̄ that
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Table 6. Systematic change in the random walk param-
eters: average observed revenues (excluding
the first horizon) for OL5 policy as a frac-
tion of the optimal expected revenues for the
true model ± standard deviation of the average
of this fraction per replication for two scenar-
ios in the case of Y = 20, N = 30, T = 200,
CV = 1, and varied periodicity.

Periodicity Informed Uninformed

40 0�984± 0�039 0�905± 0�066
200 0�984± 0�038 0�922± 0�051

is uniform on the interval from one-half to double of its
true value. The number of decision periods in this experi-
ment is increased to T = 400 to ensure that the maximum
possible sale probability remains sufficiently small even for
the maximum �̄ in the range of the prior distribution. The
results for the TL5 policy (other settings are the same as in
the previous experiments) are given in Table 7. We exclude
the first two time horizons in averages to account for slower
learning resulting from a larger parameter space. On the
remaining horizons, the procedure shows similar behav-
ior in terms of the highest observed percentage and the
gap between the two scenarios (99% performance for the
informed case and 1.7% gap for higher learning frequency).

6. Conclusions
This paper presents a new and robust procedure for the
learning of customer demand characteristics that is inte-
grated with dynamic pricing. The demand-learning and
pricing optimization methodology is general and indepen-
dent of specific distributional assumptions. This adaptive
procedure permits learning of consumer response through
observation of sales over successive learning stages. The
learning component draws on the ideas of the general
aggregating algorithm and can learn all characteristics of
demand simultaneously. The pricing policy is optimized
by a simulation-based procedure. We provide an efficient
implementation of the method and illustrate its use with a
particularly complex dynamic pricing problem faced by a
monopolist whose customers are strategic.

Table 7. Unknown �̄: average observed revenues (ex-
cluding the first two horizons) for TL5 policy
as a fraction of the optimal expected revenues
for the true model ± standard deviation of the
average of this fraction per replication for two
scenarios in the case of Y = 20, N = 30, T =
200, CV = 1, and varied periodicity.

Periodicity Informed Uninformed

40 0�990± 0�037 0�983± 0�044
200 0�988± 0�035 0�973± 0�045

We also demonstrate that the proposed learning approach
is robust in a statistical sense. The observed performance
of the method is very close to that of the optimal dynamic
pricing policy for the case when the demand model is
known exactly despite the use of an approximate model of
consumer behavior in learning.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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Online Appendix A: additional implementation details

The first component of the integrated policy optimization-learning approach is a simulation-based

policy optimization step. While the optimization algorithm is a widely available derivative-free

method, we need to implement a special subroutine that evaluates the objective function by sim-

ulation. Let the most recent distribution of the parameter vector x̃ be approximated by a discrete

sample W = {xi}
K
i=1. In the terminology of AA, each element of W corresponds to a prediction

of consumer demand by a particular predictor. The second step is to simulate Mi realizations of

the future sales process sample path for each xi using the pricing policy and the corresponding

Λxi(t, y, p) as the probability of sale for each t, y, p. If we use the entire sample W then Mi should

be the same fixed value for all sample points. However, using the entire sample will usually entail

excessive computation. In this case, we can simulate sample paths for a randomly selected subset

of W (with or without replacement) resulting in random but identically distributed Mi’s. Let the

corresponding sales process histories be labelled as N ij
tij

, j = 1, . . . ,Mi (where tij represents T or

the time after the sale of the Y ’th item in this sales process path). Then the expectation in (6)

can be approximated by the average over W and the simulated sample paths:

1

M

K
∑

i=1

Mi
∑

j=1

(R(N ij
tij

)−R(Nt′)),

where M =
∑K

i=1 Mi is the total number of sample paths.

The second component is an update procedure for the finite-sample approximation W to the

distribution x(Nt′ ,Pt′). This update produces a finite-sample approximation W ′ to the posterior

distribution x(Nt,Pt), where Nt∩ [0, t′−1] =Nt′ and Pt′ is a sublist of prices in Pt up to time t′−1,

inclusive. This is done by a Monte-Carlo accept-reject algorithm with bootstrap-like resampling of

the elements of W (see, for example, Levina (2006)). The elements of the new sample are labelled

x′
k, where k is the counter of points in the new sample W ′.

Algorithm: accept-reject with bootstrap resampling

Inputs: finite-sample (size K) approximation W of x(Nt′ ,Pt′),

sales and price process history (Nt,Pt)

Output: finite-sample (size K) approximation W ′ of x(Nt,Pt)

Set k := 0

Set Lmax := maxi=1,...,K L(Nt,Pt |xi)

while k < K do

Choose u from U [0,1]
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Choose j randomly from {1, . . . ,K}

if u≤
L(Nt,Pt |xj)

Lmax

then

Set k := k +1

Set x′
k := xj

endif

enddo

In selecting the new sample W ′, the algorithm favors those elements of W with a high likelihood

ratio.

Online Appendix B: game-theoretic consumer choice model

The consumer behavior model used in this paper shares a number of assumptions with the model

described in Levin et al. (2005). However, that model assumed full consumer rationality in the

‘game’ against the company — an assumption that is not reasonable when the information avail-

able to the company is imperfect, and customers cannot know the learning mechanism used by

the company. Thus, a fundamental departure in the present paper is the assumption of limited

rationality of customers. This assumption is practical and allows us to reduce the complexity of

consumer behavior being modeled and to derive a number of intuitive structural results. Such

results cannot be established in general in the full rationality case.

We emphasize that, like any model, the present one contains assumptions that may not hold

in many real markets. However, the assumptions may hold approximately, and our main goal in

presenting the detailed model is to establish a theoretical justification for the demand model (7),

that establishes the importance of the expected consumer surplus.

As in Example 1, we let N be the initial market size. The assumption of a finite population

is appropriate for modeling strategic consumers since, in this setting, it is necessary to describe

individual consumer behavior. Consumer presence from the beginning of the planning horizon

represents a marketplace in which each consumer engages in strategic planning and can make a

purchase at any time during the selling season. This assumption can be relaxed by incorporat-

ing random consumer departures and arrivals (up to some maximum population size). However,

such a generalization complicates the analysis and is not crucial for an initial presentation of the

methodology.

We also assume that the consumer population is homogeneous (as in Example 1), and this

assumption has some important consequences. First, it reduces information requirements for com-

puting the optimal strategy. If the population is nonhomogeneous, then consumers and the company
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would need to track the dynamics of the population distribution over nonhomogeneous characteris-

tics. We show that, with a homogeneous population, it is sufficient to track only the current number

of customers, n, who have not yet acquired an item. Second, homogeneity justifies a customer belief

that other customers behave in the same way. The knowledge of n may be assumed in electronic

markets requiring registration, and when web-sites track and report the number of unique ‘hits’ to

their site. A company has an incentive to report the total market size to its customers to reinforce

the perception of competition. Settings where both y and n may be public information include, for

example, cruise lines, which sell their own tickets through the internet, as well as charter flights,

stadiums and concert halls. Both of these quantities will be known as long as the available seats

are shown and the market size is reported on the website.

Stochastic aspects of the model aim at capturing consumer uncertainty: about future prices,

about future willingness to pay, and about timing of purchases. Timing uncertainty also encom-

passes acquisition uncertainty since customers cannot be sure that they will acquire the product if

supply is limited — a phenomenon frequently occurring in practice.

Next, we summarize elements of the consumer choice model that are similar to those in Levin

et al. (2005).

1. Customer decisions are derived in terms of eagerness to purchase, which is a value between

0 and 1 with 0 signifying the absence of desire, and 1 signifying the desire to purchase the

product as quickly as possible. The eagerness controls the intensity of purchase opportunities

for the customer. The expected number of purchase opportunities for an eager customer during

the planning horizon of length T is given by λ̄T . Because of the choice of the time units of

the discrete-time model, the upper bound on the intensity of such events λ̄ is equal to the

probability that an eager customer will actually be able to acquire an item in a given decision

period.

2. The probability that a sale to some customer occurs is the sum of the probabilities of purchase

by individual customers. For example, in the case of k customers eager to purchase an item,

the probability of a sale occurring is kλ̄. Summing purchase probabilities in the discrete-time

model corresponds to summing the shopping intensities of individual customers to obtain the

total demand intensity for the entire market in a continuous-time model.

3. Each customer has a valuation for the product: the maximum amount he/she is willing to spend

in the current decision period. A customer with valuation b who makes a purchase at price p,

evaluates it in terms of the surplus b− p. The value of the surplus for an item purchased in the

future is discounted by a factor β ∈ [0,1] per time period, which can be interpreted as the degree
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of strategicity of the customer. There is no penalty, other than opportunity loss, for failure to

acquire an item.

4. Consumers do not know their exact valuations for the product at the time of purchase. The

uncertainty in valuation of any customer at time t∈ {0,1, . . . , T −1} is represented by the same

random variable B(t) with a distribution function Ft(b), reflecting homogeneity of the consumer

population. We assume that the actual customer eagerness to purchase is the average of the

eagerness derived for each possible value b of B(t) over Ft(b).

5. At the time of their decisions, all customers know the current number of customers n, the

remaining inventory y, current price p, and their valuation distribution function Ft(b). Customer

eagerness at time t for a given inventory level y, number of remaining customers n, price p and

valuation b, is denoted as ex(t, n, y, p, b)∈ [0,1]. (Note that, since customers know the size of the

customer population, the number of remaining customers can be computed from the current

inventory level as n = N − (Y − y)). The decisions are identical for all customers because of

population homogeneity. The superscript x emphasizes the obvious dependence of customer

decisions on the model parameters in x.

6. Customer response to a pricing policy is determined by a stochastic dynamic game among

the customers. A round of the game at time t, given y and n, proceeds as follows: customers

observe the price p and simultaneously respond by their eagerness to purchase averaged over the

valuation distribution. The probability of purchase λx(t, n, y, p) by the customer in the current

time interval is proportional to the customer’s average eagerness EB(t)|x[e
x(t, n, y, p,B(t))], and

the coefficient of proportionality is λ̄. The customers make their decisions as if their payoff is a

fraction of the market’s payoff which is also computed as the average over B(t).

The potential unknowns to the company that determine customer response to prices are: the

customer’s maximum demand intensity λ̄, the customer discount factor β, the distribution of B(t)

at each time t, Ft(·), and the set of parameters that determine the behavior of the anticipated price

process p̃(t) (for example, the random walk transition probabilities q, r, or distribution parameters

for the independent p̃(t)’s case). If the distribution of B(t) is parametric (determined by a finite

number of parameters), we can include all of this information in the parameter vector x.

In the online appendix C, we describe how this model, for a known x, predicts customer response

(purchase probability) for given y,n, p at time t. A key insight from this analysis is the importance

of the consumer’s expected surplus corresponding to a given state of the process.
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Online Appendix C: properties of solutions determined by the consumer choice
model

Recall that Sx(t, y,n, p) denotes the equilibrium expected present value of the customer surplus at

time t given the knowledge of y,n and the price p used by the company in the previous decision

period and before the current period’s price is observed. The following proposition describes a

recursion for calculating the equilibrium customer surplus and the resulting purchase probability.

We provide proofs of this and the other propositions in this section in online appendix D.

Proposition 1. Suppose that E[|B(t)|] and E[|p̃(t)|] are finite for given parameter values x. Then

a subgame-perfect equilibrium in the game between the customers exists. The expected payoffs of all

customers in information states at time t before experiencing price values at time t and given the

observed price at time t− 1 are identical and uniquely determined by recursion

Sx(t, y,n, p) = Ep̃(t)|p̃(t−1)=p,x

{

EB(t)|x

[

λ̄
(

B(t)− p̃(t)−βSx(t+1, y,n, p̃(t))
)+]

+β
(

(n− 1)λx(t, n, y, p̃(t))
(

Sx(t+1, y− 1, n− 1, p̃(t))−Sx(t+1, y,n, p̃(t))
)

+Sx(t+1, y,n, p̃(t))
)}

, n− y = N −Y, y ∈ {1, . . . , Y }, t∈ {1, . . . , T − 1}, p∈Π (9)

with the terminal conditions

Sx(T, y,n, p) = 0, n− y = N −Y, y ∈ {1, . . . , Y }, p∈Π, (10)

Sx(t,0,N −Y,p) = 0, t∈ {1, . . . , T − 1}, p∈Π. (11)

The corresponding equilibrium strategies (identical for all customers) are given by

λx(t, y,n, p) = λ̄P x(B(t)− p≥ βSx(t+1, y,n, p)). (12)

The interpretation of this result is clear: a customer will be eager to purchase whenever the

valuation/price difference is greater than or equal to the discounted expected surplus for purchasing

an item in the future, given that the inventory and the market size do not change. Since the

purchase probability by the customer is proportional to his/her average eagerness, we get a relation

of the form (12). Note that (12) generalizes the model with myopic consumers (β = 0), who attempt

a purchase whenever b− p≥ 0, to the case of general β by means of the adjustment term βSx(t+

1, y,n, p).

The corollary stated next is important for application of the consumer choice model to the

pricing problem of the company. The corollary follows directly from (12) by summing purchase

probabilities of all remaining customers:
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Corollary 1. Assuming that the customers behave according to their equilibrium strategies, the

sale probability Λx(t, y, p) can be computed as (7).

The above corollary shows that, under certain simplifying assumptions, the probability of sale

in a given decision period is a function of time, inventory level and the announced price. Moreover,

the corollary describes the structure of this functional dependence. While Corollary 1 offers a

useful insight, this structure needs further study. One of the issues is dependence of Λx(t, y, p)

on price p. In the model with myopic customers, which is obtained by taking β = 0, Λx(t, y, p) =

λ̄(N − (Y − y))P x(B(t) ≥ p) is a non-increasing function of p. While this is expected to be true

in demand models for most (non-Giffin) goods, the non-increasing property is not immediately

obvious in our model for general β. Thus, we need to analyze the expected surplus Sx(t+1, y,n, p)

resulting from a subgame-perfect equilibrium in the stochastic dynamic game between customers

who assume that the future price follows an exogenous Markov process p̃(t). In the discussion to

follow, we consider general values of y and n, not necessarily those appearing in a realization of a

sales process starting with fixed Y and N .

The following proposition can be interpreted as follows: at any time t, the expected customer

surplus is smaller when a sale has just occurred than when it has not, since customer competition

for remaining items increases after a sale occurs.

Proposition 2. For all t, y,n, p, we have Sx(t, y− 1, n− 1, p)≤ Sx(t, y,n, p).

The next proposition shows that the surplus is a non-increasing function in the number of

remaining customers. Again, this result is natural since competition increases for the same inventory

when the number of customers is larger:

Proposition 3. For all t, y,n, p, we have Sx(t, y,n, p)≤ Sx(t, y,n− 1, p).

Propositions 2 and 3 immediately imply that, for a fixed population of customers, the surplus

is a non-decreasing function of the remaining inventory y (also natural since smaller inventory for

the same number of customers creates higher competition):

Corollary 2. For all t, y,n, p, we have Sx(t, y− 1, n, p)≤ Sx(t, y,n, p).

The next proposition provides a useful bound on the difference in expected customer surpluses

corresponding to different observed prices and leads directly to a proof of monotonicity of purchase

probability with respect to price. The formulation uses the following notion of stochastic order (see,

for example Shaked and Shanthikumar (1994)): a random variable X is said to be stochastically

smaller than a random variable Y (denoted X ≤st Y ) if P (X > u) ≤ P (Y > u) for all u ∈ R. A
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characterization of the stochastic order relation X ≤st Y is that for all increasing functions φ(·),

E[φ(X)]≤E[φ(Y )], provided that expectations exist. The bounding relation is defined in terms of

a sequence of constants κt, t = 0, . . . , T such that

κt = β(λ̄+(1− λ̄)κt+1), (13)

κT = 0. (14)

The sequence is decreasing in t and has the property that 0≤ κt < κ̄, where

κ̄ =
βλ̄

1−β(1− λ̄)
≤ 1.

Proposition 4. Suppose that for all t > 0 and p, p′ ∈ Π such that p < p′, the anticipated future

price distribution is such that [p̃(t) |(p̃(t−1) = p)] is stochastically smaller than [p̃(t) |(p̃(t−1) = p′)]

and that E[p̃(t)− p′ | p̃(t− 1) = p′,x] ≤ E[p̃(t)− p | p̃(t− 1) = p,x] with probability 1. Then, for all

t, y,n and p, p′ ∈Π such that p < p′, we have

βSx(t, y,n, p)−βSx(t, y,n, p′)≤ κt(p
′ − p). (15)

Since κt < 1, the absolute difference in discounted surpluses corresponding to two different prices

is smaller than the difference in these prices. Then, as long as the stochastic order assumption is

satisfied, the following important corollary establishing monotonicity of Λx(t, y, p) in p holds:

Corollary 3. Under the assumptions of the above proposition, for all t, y,n and p, p′ ∈ Π such

that p < p′, we have

p+βSx(t, y,n, p) < p′ +βSx(t, y,n, p′), and (16)

Λx(t, y, p) ≥ Λx(t, y, p′). (17)

The latter inequality is strict if P x(p+βSx(t, y,n, p)≤B(t) < p′ +βSx(t, y,n, p′)) > 0.

The assumptions of Proposition 4 concerning stochastic properties of p̃(t) are reasonable restric-

tions on the customer perception of the policy and can be interpreted as follows: when p < p′,

[p̃(t) | (p̃(t− 1) = p)] is stochastically smaller than [p̃(t) | (p̃(t− 1) = p′)], since a customer assumes

that the future price tends to be higher if the past price is higher. Also, when p < p′, E[p̃(t) −

p′ | p̃(t − 1) = p′,x] ≤ E[p̃(t) − p | p̃(t − 1) = p,x] with probability 1 since a customer expects the

difference in the future and past prices to be lower when the past price is higher. These assumptions

are satisfied both when p̃(t) is a random walk on equally spaced prices (see the online appendix B

for details), and when p̃(t) is independent of p̃(t− 1).

The next result shows that the surplus is a non-increasing function of time when the valuation

distribution is stationary over time. This result is natural since shorter remaining time implies

fewer purchase opportunities for the customers.
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Proposition 5. Suppose that for all t and p ∈Π, the distributions of the valuation B(t) and the

anticipated future price [p̃(t + 1) | p̃(t) = p] are independent of t (stationary). Then, for all t, y,n

and p∈Π, we have Sx(t, y,n, p)≥ Sx(t+1, y,n, p).

We point out that it is not necessary to accept all of the assumptions of the consumer choice

model described above. Instead, one can assume that the simple decision rule given by (12) is a

plausible approximation to the behavior of risk-neutral consumers and that the structural results

given above are reasonable assumptions about the properties of the expected surplus.

Online Appendix D: proofs of structural results for the consumer choice model

Proof of Proposition 1

The proof is by reverse induction on t. Suppose that the statement holds for t+1 and subsequent

decision periods. Given the observed price p, suppose the valuation is equal to b. Let the expected

present value of surplus for a customer be V x(t, y,n, p, b). The expected present value of the cus-

tomer’s surplus at time t + 1 for given y,n before experiencing the price used by the company in

step t+1 (which a consumer anticipates to be p̃(t+1)) averaged over the valuation B(t+1) is

Sx(t+1, y,n, p) = Ep̃(t+1),B(t+1)|p̃(t)=p,x[V
x(t+1, y,n, p̃(t+1),B(t+1))].

We next describe the customer decision at time t. The quantity V x(t, y,n, p, b) is computed as

the expected present value over all possible transitions (sales to one of n remaining customers) in

the sales process:

V x(t, y,n, p, b) = max
0≤e≤1

{

λ̄e(b− p) +β(n− 1)λx(t, y,n, p)Sx(t+1, y− 1, n− 1, p)

+β
(

1− λ̄e− (n− 1)λx(t, y,n, p)
)

Sx(t+1, y,n, p)

}

.

After collecting terms, this expression can be rewritten as

V x(t, y,n, p, b) = max
0≤e≤1

{

λ̄e(b− p−βSx(t+1, y,n, p))
}

+β
(

(n− 1)λx(t, y,n, p)
(

Sx(t+1, y− 1, n− 1, p)−Sx(t+1, y,n, p)
)

+Sx(t+1, y,n, p)
)

.

Recall that the customer eagerness to purchase is denoted as ex(t, y,n, p, b). Noting the linearity of

the objective in e, we obtain the optimal eagerness

ex(t, y,n, p, b) = I[b− p−βSx(t+1, y,n, p)].

After averaging over B(t) we get relation (12) for the customer purchase probability, which is valid

for each of the n remaining customers. A recursive relation (9) for Sx(t, y,n, p) is obtained by

averaging V x(t, y,n, p̃(t),B(t)) over p̃(t)|p̃(t− 1) = p and B(t).
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Reformulation of (9)

In the subsequent analysis, we use the following reformulation of (9):

Sx(t, y,n, p) = Ep̃(t),B(t)|p̃(t−1)=p,x[s
x(t, y,n, p̃(t),B(t))], (18)

where

sx(t, y,n, p, b) = λ̄
(

b− p−βSx(t+1, y,n, p)
)+

+λ̄(n−1)I[b≥ p+βSx(t+1, y,n, p)]
(

βSx(t+1, y−1, n−1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p).
(19)

Technical lemma used in the proof of Proposition 2

Lemma 1. For any t and p, if the inequality Sx(t + 1, y − 1, n− 1, p) ≤ Sx(t + 1, y,n, p) holds for

all y,n then sx(t, y− 1, n− 1, p, b)≤ sx(t, y,n, p, b) holds for all y,n, b.

Proof. Let y,n be arbitrary and consider the following three cases split according to the possible

ranges of b.

Case 1: b < p+βSx(t+1, y− 1, n− 1, p). Then

sx(t, y,n, p, b)− sx(t, y− 1, n− 1, p, b) = βSx(t+1, y,n, p)−βSx(t+1, y− 1, n− 1, p)≥ 0.

Case 2: p+βSx(t+1, y− 1, n− 1, p)≤ b < p+βSx(t+1, y,n, p). Then

sx(t, y,n, p, b)− sx(t, y− 1, n− 1, p, b)

= βSx(t+1, y,n, p)− λ̄
(

b− p−βSx(t+1, y− 1, n− 1, p)
)

− λ̄(n− 2)
(

βSx(t+1, y− 2, n− 2, p)−βSx(t+1, y− 1, n− 1, p)
)

−βSx(t+1, y− 1, n− 1, p)

where we use b < p+βSx(t+1, y,n, p) to obtain

> βSx(t+1, y,n, p)− λ̄
(

βSx(t+1, y,n, p)−βSx(t+1, y− 1, n− 1, p)
)

− λ̄(n− 2)
(

βSx(t+1, y− 2, n− 2, p)−βSx(t+1, y− 1, n− 1, p)
)

−βSx(t+1, y− 1, n− 1, p)

and, rearranging the terms, finally get

= (1− λ̄)
(

βSx(t+1, y,n, p)−βSx(t+1, y− 1, n− 1, p)
)

+ λ̄(n− 2)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y− 2, n− 2, p)
)

≥ 0.

Case 3: b≥ p+βSx(t+1, y,n, p). Then

sx(t, y,n, p, b)− sx(t, y− 1, n− 1, p, b)

= λ̄
(

b− p−βSx(t+1, y,n, p)
)
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+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)

− λ̄
(

b− p−βSx(t+1, y− 1, n− 1, p)
)

− λ̄(n− 2)
(

βSx(t+1, y− 2, n− 2, p)−βSx(t+1, y− 1, n− 1, p)
)

−βSx(t+1, y− 1, n− 1, p)

= (1− λ̄n)
(

βSx(t+1, y,n, p)−βSx(t+1, y− 1, n− 1, p)
)

+ λ̄(n− 2)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y− 2, n− 2, p)
)

≥ 0.

Proof of Proposition 2

The statement is obtained by inverse induction on t. The basis of induction (at t = T ) is the bound-

ary conditions. Each induction step is an immediate application of Lemma 1 and equation (18) for

all y,n, p.

Technical lemma used in the proof of Proposition 3

Lemma 2. For any t and p, if the inequalities Sx(t + 1, y − 1, n − 1, p) ≤ Sx(t + 1, y,n, p) and

Sx(t+1, y,n, p)≤ Sx(t+1, y,n− 1, p) hold for all y,n then sx(t, y,n, p, b)≤ sx(t, y,n− 1, p, b) holds

for all y,n, b.

Proof. Let y,n be arbitrary and consider the following three cases.

Case 1: b < p+βSx(t+1, y,n, p). Then,

sx(t, y,n, p, b)− sx(t, y,n− 1, p, b) = βSx(t+1, y,n, p)−βSx(t+1, y,n− 1, p)≤ 0.

Case 2: p+βSx(t+1, y,n, p)≤ b < p+βSx(t+1, y,n− 1, p). Then

sx(t, y,n, p, b)− sx(t, y,n− 1, p, b)

= λ̄
(

b− p−βSx(t+1, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)−βSx(t+1, y,n− 1, p)

where we use b < p+βSx(t+1, y,n− 1, p) to obtain

< λ̄
(

βSx(t+1, y,n− 1, p)−βSx(t+1, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)−βSx(t+1, y,n− 1, p)

= (1− λ̄)
(

βSx(t+1, y,n, p)−βSx(t+1, y,n− 1, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

≤ 0,

since both terms in the last expression are nonpositive.
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Case 3: b≥ p+βSx(t+1, y,n− 1, p). Then

sx(t, y,n, p, b)− sx(t, y,n− 1, p, b)

= λ̄
(

b− p−βSx(t+1, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)

− λ̄
(

b− p−βSx(t+1, y,n− 1, p)
)

− λ̄(n− 2)
(

βSx(t+1, y− 1, n− 2, p)−βSx(t+1, y,n− 1, p)
)

−βSx(t+1, y,n− 1, p)

= λ̄(n− 2)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y− 1, n− 2, p)
)

+ λ̄
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+(1− λ̄(n− 1))
(

βSx(t+1, y,n, p)−βSx(t+1, y,n− 1, p)
)

≤ 0.

Proof of Proposition 3

The statement is obtained by inverse induction on t. The basis of induction (at t = T ) is the

boundary conditions. Each induction step is an immediate application of Proposition 2, Lemma 2

and equation (18) for all y,n, p.

Technical lemma used in the proof of Proposition 4

Lemma 3. For any t and any p, p′ ∈Π such that p < p′, if the inequalities Sx(t+1, y−1, n−1, p)≤

Sx(t+1, y,n, p) and

βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)≤ κt+1(p
′ − p)

hold for all y,n then

βsx(t, y,n, p, b)−βsx(t, y,n, p′, b)≤ κt(p
′ − p) (20)

holds for all y,n, b.

Proof. Let y,n be arbitrary and consider the following four cases.

Case 1: b < p+βSx(t+1, y,n, p) and b < p′ +βSx(t+1, y,n, p′). Then,

sx(t, y,n, p, b)− sx(t, y,n, p′, b) = βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)≤ κt+1(p
′ − p).

Since p < p′ and κt ≥ βκt+1, it follows that βsx(t, y,n, p, b)−βsx(t, y,n, p′, b)≤ κt(p
′ − p).

Case 2: b < p + βSx(t + 1, y,n, p) and b ≥ p′ + βSx(t + 1, y,n, p′). Then we have p + βSx(t +

1, y,n, p) > p′ +βSx(t+1, y,n, p′), a contradiction. Therefore, this case is impossible.

Case 3: b≥ p+βSx(t+1, y,n, p) and b < p′ +βSx(t+1, y,n, p′). Then,

sx(t, y,n, p, b)− sx(t, y,n, p′, b)

= λ̄
(

b− p−βSx(t+1, y,n, p)
)
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+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)

where we use b < p′ +βSx(t+1, y,n, p′) to obtain

< λ̄
(

p′ +βSx(t+1, y,n, p′)− p−βSx(t+1, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)

= λ̄(p′ − p) + (1− λ̄)
(

βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

≤ (λ̄+(1− λ̄)κt+1)(p
′− p),

since βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)≤ κt+1(p
′ − p). Inequality (20) follows.

Case 4: b≥ p+βSx(t+1, y,n, p) and b≥ p′ +βSx(t+1, y,n, p′). Then,

sx(t, y,n, p, b)− sx(t, y,n, p′, b)

= λ̄
(

b− p−βSx(t+1, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)

− λ̄
(

b− p′ −βSx(t+1, y,n, p′)
)

− λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p′)−βSx(t+1, y,n, p′)
)

−βSx(t+1, y,n, p′)

= λ̄(p′ − p) + λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y− 1, n− 1, p′)
)

+(1− λ̄n)
(

βSx(t+1, y,n, p)−βSx(t+1, y,n, p′)
)

≤ λ̄(p′ − p) + λ̄(n− 1)κt+1(p
′ − p) + (1− λ̄n)κt+1(p

′ − p)

= (λ̄+(1− λ̄)κt+1)(p
′ − p).

and (20) follows similarly to Case 3.

Proof of Proposition 4

The statement is obtained by inverse induction on t. The basis for induction (at t = T ) is obtained

immediately since Sx(T, y,n, p) = Sx(T, y,n, p′) = 0 from the boundary conditions. The induction

step is based on Lemma 3. Suppose that (15) holds for all y,n, p, p′ and time instances t + 1, t +

2, . . . , T . From Proposition 2 and the induction hypothesis, it follows that conditions of Lemma 3

are satisfied and the expression κtp+βsx(t, y,n, p, b) is monotone in p for each y,n. It follows that

the expression

EB(t) |x[κtp+βsx(t, y,n, p,B(t))]
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is monotone in p for each y,n. Since p̃(t) | p̃(t−1) = p is stochastically smaller than p̃(t) | p̃(t−1) = p′,

we conclude that

Ep̃(t),B(t)|p̃(t−1)=p,x[κtp̃(t)+βsx(t, y,n, p̃(t),B(t))]≤Ep̃(t),B(t)|p̃(t−1)=p′,x[κtp̃(t)+βsx(t, y,n, p̃(t),B(t))]

for all y,n, p, p′ where p′ > p. Using the equation (18), we can rewrite this relation as

βSx(t, y,n, p)−βSx(t, y,n, p′)≤ κt(Ep̃(t)|p̃(t−1)=p′,x[p̃(t)]−Ep̃(t)|p̃(t−1)=p,x[p̃(t)])

= κt(p
′ − p+Ep̃(t)|p̃(t−1)=p′,x[p̃(t)− p′]−Ep̃(t)|p̃(t−1)=p′,x[p̃(t)− p])

≤ κt(p
′ − p).

Test of assumptions of Proposition 4 when p̃(t) is a random walk

Without loss of generality, let the separation between prices be 1 unit. We first observe that

[p̃(t) | (p̃(t− 1) = p)] is stochastically smaller than [p̃(t) | (p̃(t− 1) = p′)] for all p′ > p, and E[p̃(t)−

p | p̃(t− 1) = p,x] has the same value for all internal p ∈ Π. It only remains to check the second

assumption when p′ = maxΠ or p = minΠ. Indeed, if p′ = maxΠ then

E[p̃(t)− p′ | p̃(t− 1) = p′,x] = (1− q) · 0 + q · (−1) =−q.

For minΠ < p < maxΠ we have

E[p̃(t)− p | p̃(t− 1) = p,x] = r · 1 + (1− q− r) · 0 + q · (−1) = r− q

while for p = minΠ we have

E[p̃(t)− p | p̃(t− 1) = p,x] = r · 1 + (1− r) · 0 = r.

We see that E[p̃(t)− p′ | p̃(t− 1) = p′,x]≤E[p̃(t)− p | p̃(t− 1) = p,x] holds with probability 1.

Technical lemma used in the proof of Proposition 5

Lemma 4. For any 0 < t < T − 1 and p ∈ Π, if the inequalities Sx(t + 1, y,n, p) ≥ Sx(t + 2, y,n, p)

and Sx(t + 2, y − 1, n − 1, p) ≤ βSx(t + 2, y,n, p) hold for all y,n then sx(t, y,n, p, b) ≥ sx(t +

1, y,n, p, b) holds for all y,n, b.

Proof. Consider arbitrary y,n and observe that Sx(t + 1, y,n, p) ≥ Sx(t + 2, y,n, p) implies that

there are three possible cases in terms of possible ranges of b.

Case 1: b < p+βSx(t+2, y,n, p). In this case,

sx(t, y,n, p, b)− sx(t+1, y,n, p, b) = βSx(t+1, y,n, p)−βSx(t+2, y,n, p)≥ 0.
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Case 2: p+βSx(t+2, y,n, p)≤ b < p+βSx(t+1, y,n, p). Then,

sx(t, y,n, p, b)− sx(t+1, y,n, p, b) =

= βSx(t+1, y,n, p)− λ̄
(

b− p−βSx(t+2, y,n, p)
)

− λ̄(n− 1)
(

βSx(t+2, y− 1, n− 1, p)−βSx(t+2, y,n, p)
)

−βSx(t+2, y,n, p)

where we use b < p+βSx(t+1, y,n, p) to obtain

> βSx(t+1, y,n, p)− λ̄
(

βSx(t+1, y,n, p)−βSx(t+2, y,n, p)
)

− λ̄(n− 1)
(

βSx(t+2, y− 1, n− 1, p)−βSx(t+2, y,n, p)
)

−βSx(t+2, y,n, p)

= (1− λ̄)
(

βSx(t+1, y,n, p)−βSx(t+2, y,n, p)
)

− λ̄(n− 1)
(

βSx(t+2, y− 1, n− 1, p)−βSx(t+2, y,n, p)
)

≥ 0.

Case 3: b≥ p+βSx(t+1, y,n, p). Then,

sx(t, y,n, p, b)− sx(t+1, y,n, p, b)

= λ̄
(

b− p−βSx(t+1, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+1, y,n, p)
)

+βSx(t+1, y,n, p)

− λ̄
(

b− p−βSx(t+2, y,n, p)
)

− λ̄(n− 1)
(

βSx(t+2, y− 1, n− 1, p)−βSx(t+2, y,n, p)
)

−βSx(t+2, y,n, p)

= (1−nλ̄)
(

βSx(t+1, y,n, p)−βSx(t+2, y,n, p)
)

+ λ̄(n− 1)
(

βSx(t+1, y− 1, n− 1, p)−βSx(t+2, y− 1, n− 1, p)
)

≥ 0.

Proof of Proposition 5

The proof is by inverse induction on t. The base case (t = T −1) is immediate since Sx(T, y,n, p) = 0

for all y,n, p due to boundary conditions. By induction, we suppose that the statement holds for

t+1, . . . , T − 1 and prove it for t. Consider arbitrary y,n, p and examine the difference

Sx(t, y,n, p)−Sx(t+1, y,n, p)

= Ep̃(t),B(t)|p̃(t−1)=p,x[s
x(t, y,n, p̃(t),B(t))]−Ep̃(t+1),B(t+1)|p̃(t)=p,x[s

x(t+1, y,n, p̃(t+1),B(t+1))].

Since the distributions of B(t) and B(t+1) as well as of p̃(t+1) | p̃(t) = p and p̃(t) | p̃(t−1) = p are

identical, we can rewrite this difference as

Sx(t, y,n, p)−Sx(t+1, y,n, p)

= Ep̃(t),B(t)|p̃(t−1)=p,x[s
x(t, y,n, p̃(t),B(t))− sx(t+1, y,n, p̃(t),B(t))].

The right-hand-side of this equation is nonnegative since, for all realizations of B(t) and p̃(t),

sx(t, y,n, p̃(t),B(t)) ≥ sx(t + 1, y,n, p̃(t),B(t)) (the latter follows from the induction hypothesis,

Proposition 2, and Lemma 4).


