Directional Halley and Quasi-Halley Methods in n Variables
Yuri Levin® * and Adi Ben-Israel”

2RUTCOR~Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Rd,
Piscataway, NJ 08854-8003, USA. E-mail: ylevin@rutcor.rutgers.edu

PRUTCOR-Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Rd,
Piscataway, NJ 08854-8003, USA. E-mail: bisrael@rutcor.rutgers.edu

A directional Halley method for functions f of n variables is shown to converge, at a cubic rate,
to a solution. To avoid the second derivative needed in Halley method we propose a directional
quasi-Halley method, with one more function evaluation per iteration than the directional Newton
method, but with convergence rates comparable to the Halley method.

1. Introduction
When describing iterations such as
o* = ®(2* d¥)) or 2P = W(F M) kE=0,1,... (1)

we sometimes denote the current point by z, the next point by =, and the previous point by x_,
so that (1) is written simply as

xy = ®(x,d), or zy = V(z,z_).
Consider a single equation in n unknowns,
f(x)=0, or f(xy,29,...,2,)=0. (2)

Under standard assumptions on f and the initial approximation, the directional Newton method

)
Vix) a9 3)

converges to a solution at a quadratic rate, for certain directions d related to the gradient V f(x),
see [6, Theorems 2-3|. An important special case of (3) is when d is along the gradient V f(x),
giving

Xy =X

N
=X o V) @)

*The work was supported by DIMACS

For n = 1, method (3) reduces to the scalar Newton method

_ . @
o imo- 1 ©
with which it shares quadratic convergence. Applying (5) to the function f(x)/+/f'(x) we get
o f(z)
R LC TG o
2f'(x)

the (scalar) Halley method with cubic rate of convergence. The quasi-Halley method of [1] replaces
the second derivative in (6) by a difference (f'(z) — f'(z-))/(x — x_),

o ()
T i) g
2w —)])

without losing much in convergence rate, see [1, Theorem 3| where (7) was shown to have order
1+ /2, and [1, Theorem 5] where the Halley step h and quasi-Halley step ¢ were shown to satisfy
|h — q| = O(|u_|?) where u_ is the previous Newton step. This shows that sufficiently close to
a solution, the Halley and quasi-Halley methods are indistinguishable, as confirmed by numerical
experiments.

A Halley method for solving operator equations in Banach space was given by Safiev [7] and Yao
[9]. They assume three times differentiable mappings, with bijective first derivatives. Specializing
to functions f : R™ — R" where the second derivative f” is a tensor, the Halley method of [7] and
9] is of theoretical interest, but difficult to implement.

On the other hand, a Halley method for solving (2), a single equation in 7 unknowns, is practical.
For f : R — R we define, in analogy with the directional Newton method (3), the directional
Halley Method as:

f(x)

fx) .,
T ovix)d’ (X>d> d

where f” is the Hessian matrix of f. For n = 1, (8) reduces to the scalar Halley method (6).
We establish cubic convergence for the method (8) for the directions d in two cases:

Xy =X —

(770 " ;.

e directions d nearly constant throughout the iterations, see § 2, Theorem 1, and

e directions d along the gradient V f(x), in which case (8) becomes
f(x
X = 2 Vi),)

2 f(x) "(x x
IV f(x)] —va()()-f()V f(x)

see § 3, Theorem 2.

In § 4 we propose the following directional quasi-Halley method

f(x)

2(1_r({x— f(x)
VGl (1 d (e

Xy =X —

Vi) /1) v Y

obtained by approximating the term involving the second derivative in (9)

f(x)

\ IV G0l 7(x)
—— - _Vf(x)- x)VFix) b ELEL AL A L x———~ _Vf(x .
ST VI () VTG by f< 7 >)

f(x) IV fGol?
The advantages of the directional quasi-Halley method (10) include:

e it avoids the second derivative needed in (9), requiring only one more function evaluation per
iteration than the directional Newton method (4),

e if both methods (9) and (10) converge, their steps near a solution are approximately equal,
see Theorem 3.

In §§ 5-6 we study three directional methods, along the direction of the gradient:
e the directional Newton method (4),
e the directional Halley method (9), and
e the directional quasi-Halley method (10).

We will drop the adjective “directional” when referring to these methods. The corresponding steps,
along the gradient V f(x),

I R)
Newton step, u = 2SI Vfx), (11a)
Halley step, h = -— f(X)f(X) Vf(x), andllb)
IV = SV VIx)- ["(x)Vf(x)
quasi-Halley step, q = — e _f(X)f(X) Vf(x) (11c)
IVFGIP (1= f (% —||vf(x>||gvf(x) /f(x)

are compared in § 5. In numerical experiments, reported in § 6, the three methods were applied
to randomly generated test problems with polynomials in several variables. In terms of average
number of iterations, the Halley and quasi-Halley methods are comparable, and both are superior
to the Newton method (4).

2. The directional Halley method (8) with nearly constant directions

In this section we study the convergence of the method (8), for directions {d’ : 7 = 0,1,---} that
are nearly constant in the sense of condition (16) below. We use the following result, a consequence
of the Mean Value Theorem,

Lemma 1. If f:R" — R is twice differentiable in an open set S then for any x,y € S
IVf(y) = Vi) <y —x| S Lf" (x+ t(y =x)Il -

The main tool for proving convergence is the majorizing sequence, due to Kantorovich and Ak-
ilov [5], see also [4, Chapter 12.4] and [9], where a majorizing sequence was used to prove cubic
convergence for Halley’s method in Banach space.

Definition 1. 4 sequence {y*} , y* >0, y¥ € R for which ka“ — ka <yl —oF k=0,1,..
15 called a magjorizing sequence for {Xk

Note that any majorizing sequence is necessarily monotonically increasing.
We recall the following lemma, proved in [4, Chapter 12.4, Lemma 12.4.1].

Lemma 2. Let {yk} s a magorizing sequence for {Xk} C R™ and khm y* = y* < oo. Then there

x*—xk”gy*—yk,kzo,l,.... [

exists x* = lim x* and |
k—oo

To prove the convergence of (8), we write that iteration as

xM= xF—aoff (xk) v* | where (12a)
k d*
v = W, and (12b)
1
o = . (12¢)

L= Ve T

Theorem 1. Let f : R® — R be a three times differentiable function, x° € R", and assume that

sup ||/ (x)|| = M, (13a)
x€ X
sup [|f"(x) = N, (13b)
x€X(

where X is defined as

Xo = {x:=|x-x°||<(1+¢) B} , (14)
for ¢ and B given in terms of constants L, T, C that are assumed to satisfy
1
VA] > 1 (150)
B
e < 7, (15b)
1 2 N
T:=CLB < = here C' := [M? + = 15
g e \/ Y 3T0_IMLB) (150)
1—+1-=-2T
q = ; (15d)
14+ +v1=2T

d’ is the initial direction, and all directions satisfy

Z(dLVf(xY)) < £d V(") , deR", [[d'|=1,i=0,1,.... (16)
Then:
(a) All the points x*™ :=x* —a*f (x*) v¥ | k=0,1,--- lie in X,.
(b) x* = Jim x* exists, x* € Xy, and f(x*) =0.
(

c¢) The order of convengence of the directional Halley method (8) is cubic.

Note: We use condition (16) in its equivalent form

d-Vfx") >d’ Vfx"),d eR", |d||=1,i=0,1,.... (17)
Proof. We construct a majorizing sequence for {Xk} in terms of the auxiliary function

C 1 B

o (y) = EyQ—EerE- (18)

The quadratic equation ¢ (y) = 0 has two roots 1 = (1 +¢q) B, ro = (1 + %) B, and 0 < 1 < 7.

Then ¢ (y) = Sy —r)(y—72), ¢ (y) =Sy —r1) + (y —12)), and " (y) = C .

Starting from 3° = 0, apply the scalar Halley iteration (6) to the function ¢(y) to get

k
yk+1 — yk_ cp(y)]C —— 7/{;:071’2’_._
¢ (y*) — 19(vh)e" (v")
)
C (k2 _ 1.k B
= — = + =2
= 4 - : () CLy2 L , k=0,1,2,.(19)
Oyt —1_¢ (7(yk) _fy’““f)
L2 Oy T
1
obtained by substituting ¢'(y) = Cy— T Y'y)=0C".

Next we prove that the sequences {x*} and {y"}, generated by (8) and (19) respectively, satisfy
for k=0,1,...,

FEO < ey, (20a)
1
v < — , 20b
v < 00 (20b)
1
‘Oék, S " Ap(yk) ’ (200)
2 (¢ (yr))2
L I A (20d)

Statement (20d) says that {y*} is a majorizing sequence for {x*¥} . The proof is by induction.

Verification for £ = 0:

I (x%) |
IV < L

°l

[

IA

B
T =9 1") =¢00),
B 1
¢ (y°)
1 1
1= 5 f (x0)v0- f7 (x0) vO Sl_l p(y®)
@ W)
a2 () < Jo?] 9] 1 ()
o) o)
¢’ (y°) o) 1 0
- =Yy -y,
L= Misr 1 Oy

showing that equations (20a)-(20d) hold for k£ = 0. Suppose (20a)-(20d) hold for k£ < n.
Proof of (20a) for n + 1:

Let pn(X) = W . Cln(X)

= - x) (Vr 6 -

+(xM - x) (vf(xn) s L.

V(")

(x —x"*) (Vf(x”) d

= zn: (Xk+1 Xk) < n (yk-‘rl o yk> — yn+1 . yo _ y"“ <r .
k=0 k=0
E XO .
= " n n f(Xn) n el
S

~oviee) a4 d”)

2V f(x

2V f(x

fx")

W) dr

f(x")

i) a4 d") + flxn)d"
)

PR TR d") |

- f(x") d") + f(x") .

Note that p,(x"*') = 0. On the other hand, p,(x"*!) can be represented as

f(Xn) n "en n+1 n
d”d 'f(x)(xJr —x)

o) = fO)H VI (- - pe

o (K =X 7 () () = 5 (R =)) ()
= O VL) () S (6 X)) ()
() e
) I () + L ()) ()

1f (x")d" - f"(x")d" (Xn+1).
4 (Vf(x)-dn)?

Thus,

(" =) - fEEN) -V (X -x") - % (x™ ! —x") - 7 (x") (xMT = %)
1f(x")d"- f'(x")d"
4 (Vf(xr)-d")?

(Xn+1 o Xn) . f// (Xn) (Xn+1 _ Xn)) (21>
So, by induction

IAC]

IN

IN

Q
_3
<
=
=
0
Z
l’

IN

The following result is analogous to (21), and is proved the same way

n+1 :C_2 e (y") n+l _ n\2
) =T W (22)

For any y € [0, r;] the function % is decreasing, since

o (y) /_ (7’2—7”1)2
(o) - Cy—r—rpp VO
q_rw) Py’
R = ER O oD
—¢' (y") ') 1
1 — M_e) = _ M _e°) _L(l—MLB)' (23)
2 (¢'(ym)? 2 (¢'(y0))*
Consequently,
ntl Lo 2N Pt (23
1 < 5 (3 Sy) e s
02 n .
- Z(;((sn)))z (" =y") =0 ("), by (22)
Proof of (20b) for n + 1:
v T = :
IVf(xrt)-drt] [V f(x0) - dmtt = (Vf(x°) = Vf (xnH)) - dn
1

1 — (Vf(x0)—V f(xn+1)).dnt!
Vf(x9)-dnt1

VS (x0) - dt

1
= 0 i vroerar] Y (17)
V1 (x%) - 7] 1 = L,
< L by L 2
emma
= 1T IM|x x| Y ’
. A
T 1= LOyt Oyttt = ()
Proof of (20c) for n + 1:
}an—l-l{ 1
‘1 _ %f (xntL) yntl . o (xntl) Vn—l—l{
1
< PR VR by (20a) and (20b).
2 (¢'(ym+1))?
Proof of (20d) for n + 1:
_(p<yn+l>
/(qn+1
et = x| = [lam e v | < —— 0 by (20a), (20B) and (20c).
L2y
e(y"t)
< @' (yntl) n+2 yn+1

Consequently, (20a)—(20d) hold for all n > 0. Since the sequence {xk} is majorized by the sequence
{yk} it follows from Lemma 2 that klim x¥ =x* and x* € X .

The scalar Halley method has a cubic rate of convergence, [8], and as shown in [9], |y — y¥| <

k ok
ﬁ%, where 6 < 1 . Therefore ||x"*! —x*|| < ﬁfw, and the sequence {x*} has at least cubic

rate of convergence. [

Remark 1. Condition (16) says that all directions d* are as close, in angle, to the initial gradient
V f(x°) as the initial direction d°. Equivalently, all directions d* are in a circular cone with axis
Vf(x"), generated by d°. In particular, (16) holds if the directions are fixed

d=d°,i=12,---, (24)

in which case, (8) reduces to the scalar Halley method (6) for the function F(t) := f(x° + td),
along the line L := {x°+td : t € R}. The scalar quasi-Halley method (7) can also be used for F(t)
along L.

3. A gradient—directional Halley method

To prove the convergence of (9), we write that iteration as

XM = xF — o f (xF) vF | where (25a)
vE o= Vf(x") n

G .-

b = ! (25¢)

= LGV
The following theorem is analogous to Theorem 1. The proof is given in Appendix A.

Theorem 2. Let f : R® — R be a three times differentiable function, x° € R", and assume that

sup ||/ (x)|| = M, (26a)
x€ X
sup [|f"(x)| = N, (26b)
xEX(

where X is defined in (27d) below. Let there exist constants B, L such that

1
vl > L, e
B
e < £ (27D)
1 2 N
T:=CLB —, where C':= [M? + - 27
= g where \/ 3L _1MLB) (27¢)
1—+v1-=-2T
and finally let X = {x:=|x—x°|| < (1+¢)B} , where ¢ = (27d)

1+v1-2T
Then:

(a) All the points x*™ :=x* —a*f (x*) v¥ | k =0,1,--- lie in Xo.

(b) x* = lim x* exists, x* € Xp, and f (x*) =0.
(

k—o0

c¢) The order of convengence of the Halley method (9) is cubic.

10

4. Directional Quasi-Halley Iteration

Consider the Taylor expansion of f(z* ﬂ;iﬁi—ﬂ§<7f(E
ot~ LT))) ||v‘];(<Xk)>|| V()
) ||v€f(§k)>||2 o Vj;(fv)ﬂi;(;ﬁ? T 0 () e (1)
Multiplying by % we get
IAOT ot T oy = LTI LTI gty

showing that

SRV F(xE) - ()Y f(xF) Ve f(xb)

can be approximated by fla* — L2V f(x"))
2|V £(xh)|? f(x*) IV £(x*)))*
if | f(x¥)] is sufficiently small. Substituting this approximation to (9), we get the following iteration
k
x = xF - f(:) Vix"), k=0,1,... (28a)
f (X’“)
k
- xF_ f(x7) wok=01,. .. (28h)

f(xF +ab) — f(xF)

This quasi-Halley method does not reduce to its scalar counterpart (7) for n = 1.

5. Comparison of steps

We use the Taylor expansion of f, see [2, (8.14.3)],
1 1
FOc+) = F0) + /00 w5 160 u® 4 f(E) - u
for some & betwee x and x + u, that we write as
1 1
Foetw) = Fx) + V() - ut S u- f/xu+ o7 f7(€) -u (29)

Two iterative methods are comparable locally if at a given point they produce comparable steps.
We will compare the steps in terms of length.

11

We first compare the steps of the Newton and Halley methods, assuming both steps emanate from
the same point x*, arrived at by Newton’s method. This corresponds to a hypothetical situation
where at an iterate x* of the Newton method we have an option continuing (and making a Newton
step) or switching to the Halley method (9), making a Halley step

To simplify the writing we denote by f; the function f evaluated at x*. Similarly, V f; and f/
denote the gradient Vf and the Hessian f” evaluated at x*. The steps to be compared are the
Newton step u* and the Halley step h*, see (11a)—(11b), written as

k fi K L
u = ———=Vfi and h" = — 2 feVie VS Ve
IV 7l IVAll® = * e

The next lemma gives a condition for the Newton Halley steps to have the same sign.

Lemma 3. The steps u* and h* have the same sign if and only if

eV fiV i

IV fill* > , (30)
2|V fill”
wn which case
L") > [jo®|| if Ve V>0, (31a)
Proof. The steps u* and h* have the same sign if and only if
Vi fIV
2|V fil
that is ||V ful> > kafwkafk’
2|V fl
in which case ||V f|]> > ’||ka]|2 _ SV f’fff’“ it fiVfi- IV >0,
2|V fl
Vf. - 'V . ,
A < vl - ESE IR e v <o,
2([V fil
O

The point x* where the steps u* and h* are compared is arrived at by the Newton method. It is
therefore reasonable to assume that the following conditions hold, see [6, eq. 10a-10b]

Il < M, (32a)
IVfill > 2]u¥| M, k=1,2,.. (32b)

Theorem 3. If conditions (52a) and (32b) hold, then the Newton step u* and the Halley step h*
have the same sign, and are related by

2 4
5 Il = [m*] < 5] (33)

12

Proof.
| fi]
IV Fell 2 2o A = 27 by (32)
V- iVf
VAP Z 210 M 2 20f 1 2 21 fil =R by (32a).
IV fll
Therefore (30) holds, showing that u* and h* have the same sign. Then
k_pk Jr Jr
u — h = 77 vfk - —ka
JeV Iy VS 2
IV fell® = i IV fil
2(ViK1 Vi
_)" Ses) Vi
2 2 [V VS
IV Al (17 5o — ST
o |VIu £V fi|
. Huk . th _ (i) 2|V £l (34)
’ NI F V|
IV A IV A = e

From (32a) and (32b) it follows that |V fi - f/' Vfi| < M |V fil|*, and 2‘||fv'“%|2 <i k=012,...,
which substituted in (34) gives

[uk — h¥|| < ()5 < 3 41 fi |l

TIVAIP (= Gy TR IAIM S 3IVAL 3
proving (33). O
The Halley step h* therefore lies in the interval with endpoints %uk and %uk.
We next compare the Halley step h* and the quasi-Halley step (11c)
k
q- = - 2f<x) T VixE), E=0,1,... (35)
IV £k > (1= L0550

evaluated at the same point x* where f(x*) # 0. Numerical experience shows that, close to a root
to which both methods converge, the Halley step and the quasi-Halley step are very close. This is
explained by the the following theorem.

Theorem 4. Let f have continuous third derivative in the interval Xy, and let

sup |[f" (x)[| = N.

x€Xy
If conditions (32a) and (32b) hold, then
kE_ _k iﬁ k|2
- < A2 e)

i.e. the difference between the Halley step h* and the quasi-Halley step q* is of order O(|[u”||?),
where u” is the Newton step at the current point.

13

Proof. Let gy := V fi . Then

E_wk o _ S8k 1 _ 1
q h* = ||gk;||2 1— fr 8k il 8k _ f(xF4uF)
2llgxll” fr
ko gk) — U e e
I R L Gt A T
2 . fkgk'f;/clgk) < . f(xk—&-uk))
el ™ (1 - At) (1 - 1%
o fr g ub o+ %uk CfY uk + éf”/(f)) (uk)(3) _ (fk);”gg,;.'{;c/gk
- 2 . fkgk'f,’@'gk) < . f(Xk+uk)> ’
[(1 fegedige) (1 Lottult)
for some ¢ between x* + u* and x* |
a Lp(e) - (uh)®
2 o fkgk'f;ggk> (o f(x’f—&-uk)) ’
Note,
Xk+uk 1uk‘ 7(0) u*
M < ‘2 (0) ‘,forsomeQbetweenxk—i—ukandxk,
| fi] | fi]
FM[ut* 1 2
< 2L <= since |fy] >2M u®||” .
R]
1 k|3 2 k|3 2 k(|4
- < oV v N SN et
I e e e S B AR FR
2N [[u ! . 2
< 2 5 H - | 3, since | fel = 2M |||
2M |Ju*||” — 3 M |u*]]
4 N |\ 12
= oM (0 0

The comparison (36) between the Halley step h* and the quasi-Halley step q* is in terms of
the current Newton step u*. The same comparison in terms of the previous Newton step u*~!
(assuming the current point x* is arrived at by the Newton method) gives

_NM [
27 g ||?

Example 1. As in [6], an arbitrary system of m equations in n unknowns:

Ib* -] <

f(x) = 0, or fi(wv1,20,...,2,) = 0,i=1,...,m (37)

can be replaced by an equivalent single equation

Z fA(x) =0, (38)

14

which can be solved by both the Halley and the quasi-Halley methods. An example is given in the
Appendix A.5.

6. Numerical experience

The Halley method (9) and the quasi-Halley method (10) were tested on polynomials in n vari-
ables, n = 2,---,9, and degree d, d = 2,--- ,10. The degree of a polynomial in n variables is the
maximal degree of its terms, e.g. degree(x?y® + x* + y*) = 5. For each combination of n and d,
100 random polynomials were generated and solved by both methods, starting with the same initial
point x® = (1,1,---,1). For comparison, each such polynomial was also solved by the Newton
method (4). The stopping rule in all methods was identical, the norm of the step value is less than
1072, with an upper bound of 30 iterations. The average numbers of iterations of the directional
Newton, Halley and quasi-Halley methods, for 100 random polynomials with degree d = 2,--- ,10
and n variables, n = 2,--- ,9 are tabulated in Table 1.

Figures 1-2 illustrate two typical sections of Table 1.

In Figure 1 the number of variables is fixed at 5. For each degree from 2 to 10, 100 random
polynomials were generated and solved by the three methods, recording the average number of
iterations as a function of the degree.

134 . .
Average number of iterations

12] Newton

Figure 1. Comparison of the Newton, Halley and quasi-Halley methods for polynomials with 5
variables.

In Figure 2 the polynomial degree is fixed at 5. For each number of variables from 2 to 10, 100
random polynomials were generated and solved by the three methods, recording the average number
of iterations as a function of the number of variables.

15

Number of

) 2 4
variables
Degree N H q-H N H gH| N H gH| N H qgq-H
2 12.45 11.86 7.87 | 10.05 1040 7.93 1046 11.69 6.82 | 1247 11.22 6.92
3 11.60 12.25 8.88 | 10.75 10.98 7.75 | 11.05 9.66 6.64 | 10.45 10.23 6.28
4 13.74 11.16 8.09 | 13.24 10.70 8.15 | 10.66 10.73 7.45 | 11.11 8.18 6.56
5 14.30 11.96 9.65 | 12.38 11.77 879 | 10.16 7.80 8.02 | 10.38 8.41 8285
6 12.94 1048 9.26 | 11.92 9.82 9.25]10.58 9.26 821 | 9.06 882 711
7 13.25 10.22 10.11 | 11.50 9.16 8.00 | 10.21 7.36 8.06 | 10.08 8.46 7.76
8 9.47 10.56 890 | 1254 944 9.75]11.69 874 798| 845 739 877
9 10.86 899 9.09 | 10.33 10.17 9.09 | 10.00 10.23 9.61 | 834 7.17 7.92
10 11.61 10.04 899 |10.23 10.76 9.76 | 920 7.83 9.32 | 822 854 8.11
Number of 6 7 g 9
variables
Degree N H qgH| N H qgH| N H qgH| N H q-H
2 9.00 795 723 | 9.12 814 837 |11.20 10.59 9.13 | 9.82 10.08 7.77
3 9.64 10.67 6.00 | 10.88 9.36 7.44 | 10.03 838 6.92 (924 992 7.14
4 8.69 7.18 625 | 9.68 885 7.46 |10.02 9.15 6.95|826 7.48 6.96
5 9.93 932 6.57 | 889 737 843 | 845 6.62 6.55 | 854 7.00 7.40
6 9.35 832 7.08 | 7.65 741 6.77 | 798 6.55 6.61 | 7.70 7.52 548
7 7.80 7.47 824 | 7.65 6.03 638 | 7.62 837 6.66 821 6.89 7.80
8 879 627 691 | 766 7.03 764 | 733 743 751 |6.75 498 7.34
9 821 6.03 7.05| 847 720 7.69 | 7.74 6.58 6.68 | 825 6.66 7.30
10 726 753 7.26 | 810 6.70 745 | 6.78 6.35 7.14 |6.51 5.66 6.38
Table 1

Comparison of the directional Newton (N), Halley (H) and quasi-Halley (q-H) methods in terms
of the average number of iterations for 100 random polynomials with the given degree and number

of variables.

16

Average number of iterations
144

124 Newton

quasi-Halley

6 Number of variables

Figure 2. Comparison of the Newton, Halley and quasi-Halley methods for polynomials of degree
D.

7. Conclusions

Three methods for solving a single equation in n unknowns are discussed here:

e the Newton method (4),
e the Halley method (9), and

e the quasi-Halley method (10).

The Newton method is of order 2, see [6, Theorem 1], and requires the evaluation of f(x), V f(x)
(the Newton data) at each iteration. We use this method as our basis for comparison.

The Halley method is of order 3, see Theorem 1 above, but requires the Hessian f”(x) in addition
to the Newton data.

The order of the quasi-Halley method is unknown (the related scalar quasi-Halley method (7)
has order 1 + v/2, see [1]), however in practice it performs similarly to the Halley method, see
the comparison of steps in Theorem 4, and the numerical experience reported in § 6. In terms of
work per iteration, the quasi-Halley method requires one more function evaluation than the Newton
method, f(x+u) where u is the next Newton step. Another advantage of the quasi-Halley method
is that it is amenable for parallel implementation, since the matrix f”(x) is avoided.

REFERENCES

1. A. Ben-Israel, Newton’s method with modified functions, Contemp. Math. 204(1997), 39-50
2. J. Dieudonné, Foundations of Modern Analysis, Academic Press, 1960
3. C.-E. Froberg, Numerical Mathematics: Theory and Computer Applications, (Benjamin, 1985)

17

4. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Vari-
ables, (Academic Press, 1970)

5. L.V. Kantorovich and G.P. Akilov, Functional Analysis in Normed Spaces, (Macmillan, New
York, 1964)

6. Y. Levin and A. Ben-Israel, Directional Newton methods in n variables, Rutcor Research Report
19(1999).

7. R.A. Safiev, The methods of tangent hyperbolas, Soviet Math. Dokl. 4(1963), 482-485

J.F. Traub, [terative Methods for the Solution of Equations, (Prentice-Hall, 1964)

Q. Yao, On Halley iteration, Numer. Math. 81(1999), 647-677

© o

Appendix A: Proof of Theorem 2

Proof. Let the function ¢ and the sequence {y*} be given by (18) and (19) respectively, and let v*
and o be defined by (25b)—(25¢). We show that {y*} is a majorizing sequence for the sequence
{x*} generated by (9). This is statement (A.1d), proved below for all k. Indeed, we prove for
k=0,1,---,

< el (A1a)
IVl < —@,jyk), (A.1b)
1
ko< Al
|Oé ’ — _M w(yk) (C)
2 (¢ (yk))?
L I T (A.1d)

The proof is by induction.
Verification for £ = 0:

B
FE < =0 (") =¢0),
1
0 <L - ’
IVl < ¢ (y°)
|a0| B 1 < 1
- — 0)
— TGOV V| S 1 Dy
[x' = x| = (o™ ()| < [a®] [V [£ (x")]
_ () _ o)
< ¢'(y°) < ¢'(y°) — gt o0
- _1 @ —q4_1 ®°) ’
1 2]\/[(;?(30))2 1 20(5(30))2

showing that equations (A.la)-(A.1d) hold for k£ = 0.
Suppose (A.la)-(A.1d) hold for k < n.

18

Proof of (A.1a) for n + 1:

Hxn+1 _ XOH _ i (Xk+1 o Xk)

< (ykJrl _ yk) — 0 =yl <

SLoxM e X
Lot a,(x) = (x =) (191 6 = 50 9706) -6 V) +) 1)
Ll = x9S 6 = S L v))
o) (|9 () - ﬁ V) - 1) TH) 4 FRT)
= VT G~ S V)) D).
betmlx) = ||VV;((;<("))||2)
=) (9160 - 5 e e) s).

Note that p,(x"™) = 0. On the other hand, p,(x"*') can be represented as

f(Xn) . Vf(xn) . f//(xn) (XTL—H . X”)

P = PO TS (0) =

—i—% (x" ' —x") - 7 (x") (xMT = x") %(X"Jrl x") - f(x") (x" —x")
= FON) VL) (0 x) (X)) ()

LFONDTEED i) o (et

-+ (Moo *)1 e)

)+ Vf(x")- (X"+1)—i—
LV - X)) V(X!

4 IV £ ()|
L0 = fXM)HVF" (x=x") + =

L) VD) -) VX!
4 IV f (eI

(x" —x") - (x") (X" = x7)
(x" ' —x") - (x") (x"T = x")

— N =

()) ()

1
2
) (x™ —x") - 7 (x") (xMT = x").

Thus,

(" = - -V (X -x") - % (x™ ! —x") - 7 (x") (xMT = x")

LFGEYVTFO) POV THO) n o) it s
el b T)

So, by induction

£ (et < et e A OO e
IV (=)l
N 2 ply") } 2
< xM - x|+ — (y"*' —y")", by induction
{6 | | 4 (¢ (ym)*
N M? o (y") 1 2
= I e 1 e+ 2 b)
{6 4 (¢ (ym)* (
e") n
< {ﬁ IRCD) +%2 o (y") }(yn+1 yn)2
=) 61_ M_e) 4 1 (am))2
N A (g M2 yn " "
- {alz%@% i v
2 (¢'(y™))*
For any y € [0, 1] the function “‘,’((y)))2 is decreasing, since
¢ (y) >/ (rs — 1)
= <0, yel0,r].
(FF) = ot o
v (y") e (y°)
Also, <)
(@ () = (¢ ()
U I 2 () B 1
T M_eym) — M_e(®) (1 -XLB)
=35 (@' (™))’ 2 (¢'(y)*
1 2 N ¢ (y") 1 2
. f Xn-l-l < = M2—|—— yn+ _yn
Pl = (M sra—) G VY
c? o y") +1 2 +1
= = Yy —y") = () by (22).
4 (¢ (y"))2<
Proof of (A.1b) for n + 1:
v T 1
[VFED - IVEE) = (V) = V)
1 L

= < by lemma 2
0 %0V f(xn+1 — n+1 of’
IV f (x| H ng‘chogll V£(;)f(VXJSSH) 1—-LM|x x|

L1 1

1— Loyt~ L Cyntl = —f (ynt1)
Proof of (A.1c) for n + 1:

1
‘1 _ %f (X”H) vyl (x"“) V”“!
1
1M w(yntl)

2 (¢ (ynt+1))?

‘OénJrl‘ _

< , by (20a) and (200).

19

20

Proof of (A.1d) for n + 1:

e(y"t)
T (amt1
[+ — x| = [t x| < J\; (i}o(y"zrl) , by (20a), (20b) and (20c).
2 (¢ (ym 1))
SO(yTH»l)
T (amn+1 n n
= g =y

2 (¢! (ynt1))?

Consequently, (A.1la)-(A.1d) hold for all n > 0 . So by Lemma 2, klim x* = x* and x* € X,.

So, the sequence {Xk} is majorized by the sequence {yk} generated by the scalar Halley method.

ok
The scalar Halley method has a cubic rate of convergence, [8], and ‘ykﬂ — yk| < ﬁfw, where 6 <

ok
1, [9]. So, ka“ — Xk” < ﬁfw, and the sequence {x*} has at least cubic rate of convergence. [J

Appendix B: Maple Programs

Note. In the examples below all equations have zero RHS’s, so the values of the functions give
an indication of the error. Also, the functions use a vector variable x of unspecified dimension,
making it necessary to define the dimension, say

> x:=array(l..3):

before using a function. We use the linalg package, so

> restart:with(linalg):

B.1. The directional Halley Method (8).
The function HalleyDirNext (f,x,x0,d) computes the next directional Halley iterate of f(z) at
2% in the direction d

HalleyDirNext:=proc(f,x,x0,d)

local val,gr,c,cc,hes;

val:=eval (subs(x=x0,f)):

gr:=eval (subs (x=x0,grad(f,x))):
c:=dotprod(gr,d):

hes:=eval (subs (x=x0,hessian(f,x))):
cc:=dotprod(d,evalm(hes &* d)):
evalm(x0-(val/(c-(cc*val)/(2*c))*d));
end:

V VVVVVVYVYV

&
O

. The gradient Halley Method (9).
The function HalleyGrad(f,x,x0,N) computes N iterationsfor f(x) starting at x°

HalleyGrad:=proc(f,x,x0,N)

local d,sol,valf; global k;

k:=0; sol:=array(0..N):s01[0]:=x0:
valf:=eval (subs(x=x0,f)):

vV V.V V

VVVVVVVYVYVYVYVYV

21

print (f);

lprint(Iterate,0) :print(sol[0]):

lprint (function) :print(valf):

for k from 1 to N do d:=eval(subs(x=sol[k-1],grad(f,x))):
sol[k] :=HalleyDirNext(f,x,sol[k-1],d):

valf:=eval (subs(x=sol[k],f)):

if (sqrt(dotprod(sol[k]-sol[k-1],s0l[k]-sol[k-1]))<eps) then
break fi:

od:

lprint(Iterate,k-1) :print(sol[k-1]):

lprint (function) :print(valf):

end:

Example B.2. f(z) = exp(l — 27 — x5) — 1, 2° = (1.0,1.2), 10 iterations.

>

HalleyGrad(exp(1-x[1]-x[2])-1,x,[1.,1.2],3);

6(1—1‘1—J32) _ 1

Iterate 0

1., 1.2]

Function

-.6988057881

Iterate 3

[.4000000000, .6000000000]

Function

B.3.

The gradient quasi-Halley Method (10).
The function QuasiDirNext(f, x, x0, d) computes the next directional quasi-Halley iterate

of f(x) at 2° in the direction V f(z?).

vV V.V V V VYV

QuasiDirNext:=proc(f,x,x0)

local val,vall,xl,gr,c; val:=eval(subs(x=x0,f)):
gr:=eval (subs(x=x0,grad(f,x))): c:=dotprod(gr,gr):
x1:=evalm(x0-(val/c)*gr): vall:=eval(subs(x=x1,f)):
if (vali<>val) then evalm(xO-val/(c*(1-vall/val))x*gr)
else evalm(x0O-val/(c)*gr); fi:

end:

The function QuasiGrad(f,x,x0,N) computes N iterations of the function f(z) starting at x°.

vV V.V V V V

QuasiGrad:=proc(f,x,x0,N)

local d,sol,valf; global k; k:=0;

sol:=array(0..N):

s01[0] :=x0:valf:=eval(subs(x=x0,f)):

print(f); lprint(Iterate,O):print(sol[0]): 1lprint(Function):print(valf):
for k from 1 to N do

22

> s0l[k] :=QuasiDirNext (f,x,sol[k-1]):

> valf:=eval(subs(x=soll[k],f)):

> if (sqrt(dotprod(sol[k]-sol[k-1],sol[k]-sol[k-1]))<eps) then break fi:
> od:

> lprint(Iterate,k-1):print(sol[k-1]): 1lprint(Function):print(valf):

> end:

Example B.3. f(z) = 23—x,, 2 = (2.1,1.2), 4 iterations.

> QuasiGrad(x[1]-2-x[2],x,[2.1,1.2],4);

$12 — T2
Iterate 0

2.1, 1.2]
Function

3.21
Iterate 3
[1192944003,ﬁL423115393

Function

11078

B.4. Comparison Between Directional methods: Newton, Halley and quasi-Halley.
Derby(deg, iter, IN) generates N random polynomials of degree deg (at most), and solves
each using Newton, Halley and QuasiHalley, allowing at most iter iterations.

Derby:=proc(deg,iter,N)

local degr,x,j,c,f,x0,init,ncount,hcount,qcount;
global k;

ncount:=0;hcount:=0;qcount:=0;

x:=array(1..2);

for degr from 2 to deg do

k:=0; ncount:=0; hcount:=0; gcount:=0;

for j from 1 to N do

c:=evalf (rand()/10712):
f:=c+randpoly([x[1],x[2]],degree=degr);
x0:=[1.0,1.0];

lprint (Newton) :

NewtonGrad(f,x,x0,iter) :ncount:=ncount+k;print (k) ;
lprint (Halley):

HalleyGrad(f,x,x0,iter) :hcount:=hcount+k;print(k);
lprint (Quasi-Halley):

NewQuasiGrad(f,x,x0,iter) :qcount:=qcount+k;print (k) ;
c:=’c’;

od:

lprint (Average-no-iterations);

lprint (Newton) ;print (evalf (ncount/N));
lprint(Halley) ;print(evalf (hcount/N));

VVVVVVVVVVVVVVVVVVYVYVYVYV

23

> lprint(Quasi-Halley) ;print(evalf (qcount/N));
> od: end:

> Derby(2,30,100);

Average-no-iterations

Newton

12.450000000
Halley

11.860000000
Quasi-Halley

7.870000000
obtaining the first comparison in Table 1.

B.5. Systems of equations.
The function SOS(x) computes the sum of squares of the components of the vector x. It is
used in some of the functions below, and works better than the MAPLE function norm(x,2)?
which is not differentiable if any x; = 0.

S0S:=proc(x)

local n,k;
n:=vectdim(x):
sum(x[k] "2,k=1..n);
end:

vV V.V V V

The function SystemHalleyGrad(f,x,x0,N) computes N iterations of the directional Halley
method for the sum of squares " | f2(z), starting at a°.

SystemHalleyGrad:=proc(f,x,x0,N)
local n,F;

n:=vectdim(x0) ;F:=S0S(f) ;print(f);
HalleyGrad(F,x,x0,N);

end:

vV V.V V V

The function SystemQuasiGrad(f,x,x0,IN) computes N iterations of the directional quasi-
Halley method for the sum of squares Y ' | f(z), starting at z°.

SystemQuasiGrad:=proc(f,x,x0,N)
local n,F;

n:=vectdim(x0) ;F:=S0S(f) ;print(f);
QuasiGrad(F,x,x0,N);

end:

vV V. V V V

Example B.4. Froberg, p. 186, Example 1

> x:=array(1l..3):
> SystemHalleyGrad([x[1] 2-x[1]+x[2]"3+x[3]"°5,x [1]"3+x[2]"5-x[2]+x[3]"7,
> x[1]°5+x[2]"7+x[3]"11-x[3]],x,[0.4,0.3,0.2],10):

[I12 — T+ .7723 + ZL’35, l’13 + 1325 — XI9 + $37, 1315 + .7327 + l’gll — 133]

(5512 — I -+ 33'23 —+ .%’35)2 + (1'13 —+ 1’25 — T -+ 1'37)2 -+ (l'15 -+ 513'27 + .’Kgn — 1‘3)2

24

Iterate 0

[4, .3, .2]

Function

1357076447
Iterate 10

[.002243051296, 0002858171153, -.0002540074383|

Function

515493824510~

> x:=array(1l..3):
> SystemQuasiGrad([x[1]~2-x[1]+x[2]"3+x[3]°5,x[1] 3+x[2]"5-x[2]+x[3]"7,
> x[1]°5+x[2] " 7+x[3]"11-x[3]],x,[0.4,0.3,0.2],10);

[1’12 — I + 1‘23 + ZL’35, 1313 + 1’25 — X2 + .T37, l’15 + .73'27 + ZE311 — 133]

(ZE12 — T + 1323 + 1335)2 + (1’13 + 1'25 — X2 -+ l’37)2 -+ (ZE15 + I27 + 13311 — 173)2

Iterate 0
(4, .3, .2]
Function

1357076447
Iterate 10

.0001876563761, .4627014469 10—, —.3061094461 10~

Function

.3523247963 1077

