Online Appendix to “Linear Programming with Online Learning”
by T. Levina, Y. Levin, J. McGill and M. Nediak

Proof of Lemma 1. Since X is bounded, there exists a ball B of radius R around 0 such that $X \subseteq B$. Also, since K^o has a nonempty interior, there exist $x'_0 \in -K^o$ and a ball B' of radius R' around x'_0 such that $B' \subseteq -K^o$. Since $B' \subseteq -K^o$, we have
\[
 c^T x' \geq 0 \quad \text{for all } c \in \Omega \subseteq K.
\]
We establish a one-to-one correspondence between points of X under this mapping is a polyhedral set X' defined by $A \left(\frac{R'}{R} (x' - x'_0) \right) \leq b$, which is equivalent to $A x' \leq b' = A x'_0 + \frac{R'}{R} b$. Note that, since $X' \subseteq B'$, condition (2) holds for X'.

Proof of Lemma 2. The result follows from Jensen’s inequality
\[
 h(E_P[\xi]) \geq E_P[h(\xi)] \quad (10)
\]
which holds for any concave function h and probability measure P. Indeed, consider the function $h(x) = (c^T x)^\eta$, which is concave for $0 < \eta \leq 1$ as a composition of concave and linear functions. To apply (10), observe that $\Sigma(\xi, P)$ is the expected value of the random variable ξ with respect to the probability measure P; that is, $\Sigma(\xi, P) = E_P[\xi]$, and the right-hand-side of (7) is the expected value of the random variable $h(\xi) = (c^T \xi)^\eta$ with respect to the probability measure P; that is:
\[
 \int_\Theta (c^T \xi(\theta))^\eta P(d\theta) = E_P[(c^T \xi)^\eta].
\]

Proof of Proposition 1. By Lemma 2,
\[
 (c_t^T x_t)^\eta = (c_t^T \Sigma(\xi_t, P_{t-1}))^\eta \geq \int_\Theta (c_t^T \xi_t(\theta))^\eta P_{t-1}(d\theta) = \frac{\int_\Theta (c_t^T \xi_t(\theta))^\eta P_{t-1}(d\theta)}{P_{t-1}(\Theta)} = \frac{P_t(\Theta)}{P_{t-1}(\Theta)}.
\]
By multiplying (11) for t from 1 to T, we get $\prod_{t=1}^T (c_t^T x_t)^\eta \geq P_T(\Theta)$.

After observing that $\prod_{t=1}^T (c_t^T x_t)^\eta = (G_T(AA(\eta, P_0, \Sigma)))^\eta$, we get (8).

Lemma required in the proof of Theorem 1.

Lemma 3. Consider a learning rate $0 < \eta \leq 1$, a simplex \bar{X}, a probability measure \bar{P}_0 on \bar{X}, and a feasible solution $\bar{\delta} \in \bar{X}$. If there exists a constant B' such that the inequality
\[
 \int_{\bar{X}} \prod_{t=1}^T (c_t^T \bar{x})^\eta \bar{P}_0(d\bar{x}) \geq B' \prod_{t=1}^T (c_t^T \bar{\delta})^\eta \quad (12)
\]
holds for all c_t, $t = 1, \ldots, T$ which are unit vectors, then it holds for all nonnegative c_t, $t = 1, \ldots, T$.

Proof. The proof is based on [17]. Notice that the function $\left(\int_{\bar{X}} (c^T \bar{x})^\eta \bar{P}_0(d\bar{x}) \right)^{1/\eta}$ is concave in c, if $0 < \eta \leq 1$. This follows from Minkowski’s inequality for integrals [11, Theorem 198].

Next we move in steps starting with $t = T$, first showing that if (12) holds for all c_T’s which are unit vectors, then it holds for all nonnegative c_T’s. Set
\[
 f(\bar{x}) := \left(\frac{\prod_{t=1}^{T-1} (c_t^T \bar{x})^\eta}{\prod_{t=1}^{T-1} (c_t^T \bar{\delta})^\eta} \right)^{1/\eta}.
\]
We can rewrite (12) as \(\left\{ \int_X (\tilde{c}_i^T \tilde{x})_n \tilde{P}(d\tilde{x}) \right\}^{\frac{1}{\eta}} \geq (B')^{\frac{1}{\eta}} (\tilde{c}_i^T \tilde{\delta}) \), where the measure \(\tilde{P}(d\tilde{x}) \) is defined to be the product \(f(\tilde{x}) \tilde{P}_0(d\tilde{x}) \). The function on the left is concave in \(\tilde{c}_T \), and the function on the right is linear in \(\tilde{c}_T \). Therefore, it is sufficient to prove inequality (12) for \(\tilde{c}_T \)'s which define the extreme rays of a nonnegative orthant. Moreover, both sides are positive-homogeneous of degree 1 in \(\tilde{c}_T \). This implies that if (12) holds for all \(\tilde{c}_T \) which are unit vectors, then it holds for all nonnegative \(\tilde{c}_T \)'s. From now on \(\tilde{c}_T \) is assumed to be a unit vector.

Next, set
\[
 f(\tilde{x}) := \frac{\prod_{t \in \{1, \ldots, T-2, T\}} (\tilde{c}_i^T \tilde{x})^\eta}{\prod_{t \in \{1, \ldots, T-2, T\}} (\tilde{c}_i^T \tilde{\delta})^\eta},
\]
and rewrite (12) as
\[
 \left\{ \int_X (\tilde{c}_i^T \tilde{x})_n \tilde{P}(d\tilde{x}) \right\}^{\frac{1}{\eta}} \geq (B')^{\frac{1}{\eta}} (\tilde{c}_i^T \tilde{\delta}),
\]
where the measure \(\tilde{P}(d\tilde{x}) \) is defined above.

The same argument permits the assumption that \(\tilde{c}_{T-1} \) is a unit vector, and we can apply similar arguments to \(\tilde{c}_{T-2}, \ldots, \tilde{c}_1 \).

Proof of Theorem 1. It follows from Proposition 1 and the relation (6) that
\[
 (G_T(AA(\eta, P_0, \Sigma)))^T \geq \left(\int_X \prod_{t=1}^T (c_i^T x)^\eta P_0(dx) \right)^{\frac{1}{\eta}}.
\]
We also observe that \((G_T(\tilde{\delta}))^T = \prod_{t=1}^T c_i^T \tilde{\delta} \). Therefore, to show (9), we need to prove
\[
 \left(\int_X \prod_{t=1}^T (c_i^T x)^\eta P_0(dx) \right)^{\frac{1}{\eta}} \geq (B')^{\frac{1}{\eta}} (\eta T + k - \frac{1}{\eta}) \prod_{t=1}^T c_i^T \tilde{\delta},
\]
where \(B' > 0 \) is a constant independent of \(T \) and \(\eta \).

Map the set \(X \) onto a \((k-1)\)-dimensional simplex \(\tilde{X} \) in \(k \)-dimensional space so that the vertices of \(\tilde{X} \) correspond to the vertices of \(X \). Note: we use \(\sim \) to represent the parameters on the simplex. Then,
\[
 \int_X \prod_{t=1}^T (c_i^T x)^\eta P_0(dx) \geq \frac{1}{Q} \int_{\tilde{X}} \prod_{t=1}^T (\tilde{c}_i^T \tilde{x})^\eta \tilde{P}_0(d\tilde{x}),
\]
where \(\tilde{P}_0 \) is a uniform distribution on \(\tilde{X} \), \(\tilde{c}_t \) is a vector of the (nonnegative) objective function values \(c_i^T x^t \) for every vertex \(x^t \) of \(X \), and \(Q \) is a constant that only depends on the polytope \(X \) (it does not depend on \(T \) and \(\eta \)). Note that for an arbitrary \(\tilde{\delta} \in \tilde{X} \), there is a corresponding \(\tilde{\delta} = \sum_{i=1}^k \tilde{\delta}_i x^i \in X \) (where \(k \) is the number of vertices of \(X \)), and \(\prod_{t=1}^T \tilde{c}_i^T \tilde{\delta} = \prod_{t=1}^T \tilde{c}_i^T \tilde{\delta} \).

By Lemma 3 in the Appendix, it is enough to consider sequences of \(\tilde{c}_t \)'s which are unit vectors. These sequences are merely a mathematical construction used in the proof and may not necessarily correspond to sequences of objective vectors which can be observed in the problem.

Suppose that \(\tilde{c}_{t,i} = 1 \) occurs \(T_i \) times out of \(T \), \(i = 1, \ldots, k \). Without loss of generality, we sort the indices \(i \) so that \(T_i \geq T_{i+1} \) for \(i = 1, \ldots, k' \), and \(T_i = 0 \) for \(i = k'+1, \ldots, k \) for some \(k' \leq k \). Then,
\[
 \left\{ \int_{\tilde{X}} \prod_{t=1}^T (\tilde{c}_i^T \tilde{x})_n \tilde{P}_0(d\tilde{x}) \right\}^{\frac{1}{\eta}} \geq \left\{ \int_{\tilde{X}} \prod_{t=1}^{k'} (\tilde{x}_i)_n \tilde{P}_0(d\tilde{x}) \right\}^{\frac{1}{\eta}}.
\]
The last inequality holds because the optimal solution to the problem
\[
 \max \left\{ \prod_{i=1}^{k'} \tilde{\delta}_i^{T_i} : \sum_{i=1}^k \tilde{\delta}_i = 1, \tilde{\delta}_i \geq 0, i = 1, \ldots, k \right\}
\]
is given by \(\tilde{\delta}_i = \frac{T_i}{T}, \ i = 1, \ldots, k \).

By a simple corollary of Stirling’s approximation to the gamma function \(\Gamma(z) \) (see [1, Article 6.1.37]), there exist constants \(C_1 \) and \(C_2 \) such that for all \(z \geq 1 \): \(C_1 z^{-1/2} e^{-z} \leq \Gamma(z) \leq C_2 z^{-1/2} e^{-z} \). The function under the integral on the right-hand-side of (15) is an unnormalized Dirichlet \((T_i \eta + 1, \ldots, T_k \eta + 1)\) distribution on \(\tilde{X} \). Since its normalizing constant is equal to \(\frac{\prod_{i=1}^k \Gamma(T_i \eta + 1)}{\Gamma(T \eta + k)} \), and the inverse of the normalizing constant of the uniform distribution on \(\tilde{X} \) is \(\Gamma(k) \), we can continue equation (15) as follows

\[
\left\{ \frac{\int_{\tilde{X}} \prod_{i=1}^{k'} (\tilde{x}_i)^{T_i \eta} \tilde{p}_0(d\tilde{x})}{\prod_{i=1}^{k'} \left(\frac{T_i}{T} \right)^{T_i}} \right\}^{\frac{1}{\eta}} \geq \left\{ \frac{\prod_{i=1}^{k'} \Gamma(T_i \eta + 1)}{\Gamma(T \eta + k)} \frac{T^T}{\prod_{i=1}^{k'} T_i} \Gamma(k) \right\}^{\frac{1}{\eta}}
\]

Moreover, since \(\left(1 + \frac{1}{T_i \eta} \right)^{T_i \eta} \geq 1 \) and \(\left(1 + \frac{T_i}{T \eta} \right)^{T \eta} \leq e^k \), inequality (16) implies

\[
\left\{ \frac{\int_{\tilde{X}} \prod_{i=1}^{k'} (\tilde{x}_i)^{T_i \eta} \tilde{p}_0(d\tilde{x})}{\prod_{i=1}^{k'} \left(\frac{T_i}{T} \right)^{T_i}} \right\}^{\frac{1}{\eta}} \geq \left(\frac{\prod_{i=1}^{k'} C_1 e^{-1} (T_i \eta + 1)^{\frac{1}{2}} \Gamma(k)}{\prod_{i=1}^{k'} C_2 (T \eta + k)^{k^{-\frac{1}{2}}} \Gamma(k)} \right) \frac{1}{\eta} \geq \left(\frac{C_1 e^{-1} \Gamma(k)}{C_2 (\eta T + k)^{k^{-\frac{1}{2}}}} \right) \frac{1}{\eta}
\]

\[
\geq \left(\frac{B''}{(\eta T + k)^{k^{-\frac{1}{2}}}} \right)^{\frac{1}{\eta}},
\]

where \(B'' > 0 \) is a constant which does not depend on \(T \) and \(\eta \). Combining (14), (15), and (17), we get (13).

To obtain the optimal value of the learning rate \(\eta \), we need to minimize the expression

\[
\frac{k - \frac{1}{\eta} \ln(\eta T + k) + \frac{B}{\eta}}{\eta}
\]

with respect to \(\eta \). We show next that this expression is decreasing in \(\eta \), and, therefore, the optimal \(\eta = 1 \).

The second term \(\frac{B}{\eta} \) is decreasing in \(\eta \). The first term is nonincreasing in \(\eta \) since

\[
\frac{d}{d\eta} \left(\frac{1}{\eta} \ln(\eta T + k) \right) = \frac{1}{\eta^2} \left(\frac{\eta T}{\eta T + k} - \ln(\eta T + k) \right) \leq 0.
\]

Indeed, let \(z = \eta T \), and observe that \(\left(\frac{z}{z + k} - \ln(z + k) \right) \mid_{z = 0} \leq 0 \), and \(\frac{d}{dz} \left(\frac{z}{z + k} - \ln(z + k) \right) = -\frac{z}{(z + k)^2} < 0 \), for \(z > 0 \). Thus, \(\frac{z}{z + k} - \ln(z + k) \leq 0 \) for all \(z \geq 0 \).

Proof of Proposition 2. Let \(X(\epsilon) = \{ x \in X : c^T x \geq z(1 - \epsilon) \} \) for \(\epsilon \geq 0 \). Note that

\[
c^T x_\epsilon = \frac{\int_X (c^T x)(c^T x)^\eta \tilde{p}_0(dx)}{\int_X (c^T x)^\eta \tilde{p}_0(dx)} \geq z(1 - \epsilon) \frac{\int_X (c^T x)^\eta \tilde{p}_0(dx)}{\int_X (c^T x)^\eta \tilde{p}_0(dx)}.
\]
Therefore, to prove the statement it is sufficient to construct a sequence \(\{ \epsilon_t \} \) such that \(\epsilon_t \to 0 \) and

\[
\frac{\int_{X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x})}{\int_X (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x})} \to 1 \text{ as } t \to \infty.
\]

The latter requirement is equivalent to

\[
\frac{\int_{X(\epsilon_t) \setminus X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x})}{\int_{X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x})} \to 0.
\]

Note that \(\int_{X(\epsilon_t) \setminus X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x}) \leq (z(1 - \epsilon_t))^t \mathbb{P}_0(X) \). Also, for all sufficiently small \(\epsilon \), the set \(X(\epsilon) \) contains a pyramidal (conic shaped) subset \(K(\epsilon) \) with a vertex in \(X(0) \) and the base in the plane \(\{ \mathbf{x} : c \mathbf{u} \cdot \mathbf{x} = z(1 - \epsilon) \} \). The hyperarea of the base of \(K(\epsilon) \) is directly proportional to \(\epsilon^{\tilde{n} - 1} \) times a constant (here, \(\tilde{n} \) is the relative dimension of \(X \)). Let \(\{ \nu_t \} \) be any nonnegative sequence such that \(\nu_t \leq \epsilon_t \). Then,

\[
\int_{X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x}) \geq A \int_0^{\epsilon_t} (z(1 - \epsilon))^t \epsilon^{\tilde{n} - 1} d\epsilon \geq A(z(1 - \nu_t))^t \nu_t^{\tilde{n}} \int_0^{\nu_t} \epsilon^{\tilde{n} - 1} d\epsilon = \frac{A}{\tilde{n}} (z(1 - \nu_t))^t \nu_t^{\tilde{n}}.
\]

We have

\[
\frac{\int_{X(\epsilon_t) \setminus X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x})}{\int_{X(\epsilon_t)} (c \mathbf{u} \cdot \mathbf{x})^t \mu \mathbb{P}_0(d\mathbf{x})} \leq \frac{A}{\tilde{n}} (z(1 - \nu_t))^t \nu_t^{\tilde{n}}.
\]

The right-hand-side of this inequality converges to 0 as \(t \to \infty \) as long as

\[
\frac{(1 - \epsilon_t)^t}{1 - \nu_t} \to 0.
\]

If \(\nu_t = \epsilon_t^2 \), the convergence to 0 occurs as long as \((1 + \epsilon_t)^{\tilde{n}} \to \infty \) or as long as \(\eta t \ln(1 + \epsilon_t) + 2\tilde{n} \ln \epsilon_t \to \infty \).

We now see that \(\epsilon_t = \frac{1}{\tilde{n}} \) can be used for any \(q \in [\frac{1}{2}, 1) \). Indeed, from the Taylor series expansion of \(\ln(1 + \frac{1}{t^q}) \), we get

\[
\eta t \ln \left(1 + \frac{1}{t^q} \right) - 2\tilde{n}q \ln t = \eta t \left(\frac{1}{t^q} - \frac{1}{2t^{2q}} + \ldots \right) - 2\tilde{n}q \ln t = \eta \left(t^{1-q} - \frac{1}{2} t^{1-2q} + \ldots \right) - 2\tilde{n}q \ln t \to \infty.
\]