ONLINE APPENDIX TO “LINEAR PROGRAMMING WITH ONLINE LEARNING”
BY T. LEvINA, Y. LEVIN, J. McGILL AND M. NEDIAK

Proof of Lemma 1. Since X is bounded, there exists a ball B of radius R around 0 such that X C B.
Also, since K° has a nonempty interior, there exist x;, € —K° and a ball B’ of radius R’ around x;,
such that B’ C —K?°. Since B’ C —K?°, we have

c' x>0 forall X’ € B and c€ Q C K.

We establish a one-to-one correspondence between points of B and B’ as T = X

X under this mapping is a polyhedral set X’ defined by A ( w2 (x/ — XO)) < b, which is equivalent to
Ax' <b' = Ax) + %b. Note that, since X’ C B’, condition (2) holds for X"

Proof of Lemma 2. The result follows from Jensen’s inequality
hEp[€]) > Ep[h(€)] (10)

which holds for any concave function h and probability measure P. Indeed, consider the function
h(x) = (c"x)", which is concave for 0 < 7 < 1 as a composition of concave and linear functions. To
apply (10), observe that ¥(&,P) is the expected value of the random variable & with respect to the
probability measure P; that is, ¥(&, P) = Ep[€], and the right-hand-side of (7) is the expected value of
the random variable h(£) = (c"&)" with respect to the probability measure P; that is:

/@ (cT€(0))"P(d0) = Ep[(c"€)").

Proof of Proposition 1. By Lemma 2,

[€,(0))"Py_1(d6 P:.(©
()" = (T 5(En i) > [ (07 €0))Pia0) = Jol OB PO
By multiplying (11) for ¢ from 1 to T, we get ﬁ (cfx)" > Pr(O).
=1

T
After observing that [] (c/x:)" = (Gr(AA(n, Py, X)) we get (8).
=1

Lemma required in the proof of Theorem 1.

Lemma 3. Consider a learning rate 0 < n <1, a simplex f(, a probability measure Po on X', and a
feasible solution & € X. If there exists a constant B’ such that the inequality

T
/ H X)"Po(dx) > B' [] (€] 0)" (12)
t=1
holds for all ¢;, t = 1,...,T which are unit vectors, then it holds for all nonnegative ¢, t =1,...,T.
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Proof. The proof is based on [17]. Notice that the function {fX(ETi)nlso(di)}" is concave in ¢, if

0 < n < 1. This follows from Minkowski’s inequality for integrals [11, Theorem 198|.
Next we move in steps starting with ¢ = T, first showing that if (12) holds for all ¢p’s which are unit
vectors, then it holds for all nonnegative ¢p’s. Set



1

We can rewrite (12) as {fj{ ((~:})~<)’7|5(d§c)}5 > (B’)% (¢].0), where the measure P(d%) is defined to be

the product f(%)Po(d%). The function on the left is concave in &, and the function on the right is
linear in ¢7. Therefore, it is sufficient to prove inequality (12) for €7’s which define the extreme rays of
a nonnegative orthant. Moreover, both sides are positive-homogeneous of degree 1 in ¢p. This implies
that if (12) holds for all ¢ which are unit vectors, then it holds for all nonnegative ¢r’s. From now on
Cr is assumed to be a unit vector.

Next, set

- Hte{l WT— QT}(6 5()77
f(x):= =
N Moo @0

~ - 1 ~ ~
and rewrite (12) as {ff( Cr_ 15()”P(d§c)}" > (B')n (€_,0), where the measure P(dx) is defined above.
The same argument permits the assumption that ¢r_; is a unit vector, and we can apply similar
arguments to ¢r_o,...,Cy.

Proof of Theorem 1. It follows from Proposition 1 and the relation (6) that

(GT(AA(n,Po, X (/X H c; x)"Pg(dx) )

t=1

T
We also observe that (G7(8))T = H ¢/ 0. Therefore, to show (9), we need to prove

Té, (13)

1
(/ [[(ci%)7Po(dx) ) > (B)n(nT + k)~
Xi=1
where B’ > 0 is a constant independent of 7" and .
Map the set X onto a (k — 1)-dimensional simplex X in k-dimensional space so that the vertices of
X correspond to the vertices of X. Note: we use ~ to represent the parameters on the simplex. Then,

/ (¢/ x)"Pg(dx) > — %)"Po(dx%), (14)
X =1 Xt 1
where Po is a uniform distribution on X, & is a vector of the (nonnegative) objective function values
¢/ x' for every vertex x" of X, and @ is a constant that only depends on the polytope X (1t does not
depend on T and 7). Note that for an arbltrary 6 € X, there is a correspondmg 6 = Zl 1 xi e X
(where k is the number of vertices of X), and [[/_, ¢/ d = [/, ¢

By Lemma 3 in the Appendix, it is enough to con31der sequences of C:’s which are unit vectors. These
sequences are merely a mathematical construction used in the proof and may not necessarily correspond
to sequences of objective vectors which can be observed in the problem.

Suppose that ¢;; = 1 occurs T; times out of T', i = 1,..., k. Without loss of generality, we sort the
indices i so that T; > 1 fori=1,...,k',and T; =0 for : = k' +1,...,k for some k' < k. Then,
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The last inequality holds because the optimal solution to the problem

k' k
maX{HSiTi Y 6=1,82>0i= 1k}
=1 =1

(15)



is given by 6, = L&, i=1,....k.

By a simple corollary of Stlrhng’s approximation to the gamma function I'(z) (see [1, Article 6.1.37]),
there exist constants Cy and C5 such that for all z > 1: 25 /2% < I'(z) < Cy2*~1/2¢=% The function
under the integral on the right-hand-side of (15) is an unnormalized Dirichlet(Th1n + 1,...,Tkn + 1)
[T D(Tin + 1)

I(Tn+ k)
normalizing constant of the uniform distribution on X is I'(k), we can continue equation (15) as follows

{fX i1 (i) "”50(655()}
e (%)

distribution on X. Since its normalizing constant is equal to , and the inverse of the

3=

15, 0(Tm + 1) gt
{ Fl(TnJrk) F(k)} o,

|=

C1(Tyn + 1) Tint1/2e=Tin—1

()L (k) }
Tn—k

-1l

(Tyn)Tem Co(Tny + k)Trth—1/2¢~
K Tin
1 r
=<l <1 +5 > (Tin +1)1/2e T (k)
i=1 i7l Cy (1 4 TLU) (T?]—i—k)k_l/ze_k
(16)
M ince (14 ) " >1and (14 £)"" < ¢k, inequality (16) impli
oreover, since (14 7 > 1 an + 75 < €”, inequality (16) implies
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where B” > 0 is a constant which does not depend on 7" and 7. Combining (14), (15), and (17), we get

(13).
To obtain the optimal value of the learning rate 7, we need to minimize the expression

1

-1 B
2In(nT + k) + —

Ui n

with respect to 1. We show next that this expression is decreasing in 7, and, therefore, the optimal

n=1.
The second term g is decreasing in 1. The first term is nonincreasing in n since

d (1 1 nT
ST+ k) ) = = —In(nT+k)) <
dn (n nnT =+ )> n? (nT+k nT+ )>_

—In(z + k:))
—In(z 4+ k) <0 for all z> 0.

Indeed, let z = T, and observe that (Z jk
0, for z > 0. Thus

<0, and d% (szrk —In(z + k)) = —ﬁ <
Proof of Proposition 2. Let X(e) ={x € X :c"x > z(1 —¢)} for € > 0. Note that

cTx f (c'x)(c’ x)”tPO(dx) 2(1—e) fX(s)(ch)ntPO(dx)
e Jx (€Tx)"Py(dx) S5 (cTx)"Py(dx)
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Therefore, to prove the statement it is sufficient to construct a sequence {€;} such that ¢, — 0 and
S X(e (c™x)"Pq(dx)
J X( x)1*Po(dx)
The latter requirement is equivalent to
fX\X CTX)ntPO(dX)
fX( x)"*Po(dx)

Note that fX\X(Et)(CTX)ntPO(dX) < (2(1 = et))"tPo(X). Also, for all sufficiently small €, the set X(e)
contains a pyramidal (conic shaped) subset K(e) with a vertex in X(0) and the base in the plane
{x : ¢"™x = z(1 — ¢)}. The hyperarea of the base of K(¢) is directly proportional to ¢"~! times a

constant (here, 7 is the relative dimension of X). Let {14} be any nonnegative sequence such that
14 < €. Then,

€t _ vt _
/ (c"x)"Py(dx) > A/ (2(1 — €)™ tde > A(2(1 — Vt))”t/ " Lde
X (et) 0 0
We have

— 1l ast — oo.

—

(z(1— Vt))”tz/[”.

Jx\x (e (€7%) " Po(dx) _ (1= e))"Py(X)
Jxteo (€T Poldx) = S(=(1 —m))mf
The right-hand-side of this inequahty converges to 0 as ¢ — oo as long as

— nt
1-e i_ — 0.
11— vy

If v, = €7 the convergence to 0 occurs as long as (14¢€;)"e?™ — oo or as long as nt In(1+€;)+27 In €, — oo.
We now see that ¢, = tiq can be used for any ¢ € [%, 1). Indeed, from the Taylor series expansion of
In(1+ %), we get

1 1 1 1
nt In <1+t_q) —2nqlnt =nt (tq ~ 52 —i—) —2nqlnt =n (tl_q - §t1_2q+...> —2nqInt — oo.




