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DIRECT APPROACH TO CALCULUS OF VARIATIONS VIA NEWTON-RAPHSON
METHOD

YURI LEVIN, MIKHAIL NEDIAK, AND ADI BEN-ISRAEL

Abstract. Consider m functions fi(x1, · · · , xn), the system of equations fi = 0 , i = 1, · · · , m and the
Newton iterations for this system that use the Moore–Penrose inverse of the Jacobian matrix. Under
standard assumptions, the Newton iterations converge quadratically to a stationary point of the sum-of-
squares

∑
f2

i . Approximating derivatives ẋ as differences ∆x
∆t

with ∆t = h, we apply the Newton method

to the system obtained by discretizing the integral
∫ t1

t0
L(t, x, ẋ)dt. The approximate solutions yh of the

discretized problem are shown to converge to a solution of the Euler-Lagrange boundary value problem
d
dt

∂L
∂ẋ

= ∂L
∂x

with the degree of approximation linear in h, if the Lagrangian L(t, x, ẋ) is twice continuously
differentiable. Higher continuous derivatives of L guarantee higher orders of approximation.

1. Introduction

The Newton-Raphson method for solving a system of equations

f1(x1, . . . , xn) = 0
............

fm(x1, . . . , xn) = 0
or f(x) = 0 , (1)

uses the iterations
xk+1 := xk − (Df(xk))−1 f(xk) , k = 0, 1, . . . (2)

if m = n and the Jacobian Df(x)) :=
(

∂fi

∂xj
(x)

)
is nonsingular throughout the iterations. A solution of (1)

can be found by minimizing the sum of squares
m∑

i=1

f2
i (x) → min . (3)

On the other hand, if the system (1) does not have a solution (e.g. if m > n), a minimizer of (3) may be
a reasonable substitute. Such minimizers satisfy the necessary condition

∇
m∑

i=1

f2
i (x) = 0 , or (D(f)(x))T f(x) = 0 . (4)

Replacing the inverse in (2) by the Moore-Penrose inverse Df(x)†, we obtain a Newton method (see [1])

xk+1 := xk −
(
Df(xk)

)†
f(xk) , k = 0, 1, . . . (5)

that can be shown to converge, at a quadratic rate, to a solution of (4), see [2].
In this paper we propose a direct method for solving calculus of variations problems with fixed end–points

τ1∫

τ0

L(t, x(t), ẋ(t))dt → min , (6)
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subject to x(τ0) = x0 , x(τ1) = x1 , (7)

where x0, x1 ∈ Rp, x(·) = (x1(·), . . . , xp(·)) and xi(·) ∈ C1([τ0, τ1]), i = 1, . . . , p. The method is based on
the Newton iterations (5).

Assuming the Lagrangian L in (6) is positive throughout [τ0, τ1] (since the end-points are fixed, adding
a sufficiently large constant gives an equivalent problem), we can write it as a square

L = F 2(t,x, ẋ) . (8)

A regular partition of [τ0, τ1],

[τ0, τ0 + h, τ0 + 2h, · · · , τ0 + (N − 1)h, τ1 = τ0 + N h]

is then used to approximate the derivative ẋ(·) of x(·) by a difference, say

ẋ(t) :=
x(t + h)− x(t)

h
. (9)

The integral of L in (6) is thus approximated by a sum of squares
∫ τ1

τ0

L(t,x, ẋ) dt ≈ h
∑

k

F 2

(
tk,x(tk),

x(tk + h)− x(tk)
h

)
(10)

where tk = τ0 + h k. In this way the problem (6)–(7) can be approximated by the least squares problems
∑

k

f2
k (x) → min (11)

where

fk := F

(
tk, x(tk),

x(tk + h)− x(tk)
h

)

and x is the vector with components xi(tk).
In some problems it is natural to represent the Lagrangian as a sum of squares

L =
∑

i

F 2
i (t, x, ẋ) (12)

rather than a single square as in (8). Examples are

L =
1
2

(
x2 + ẋ2

)
, or L = M +

1
2

(
x2 − ẋ2

)
,

where M > 0 is sufficiently large to make L positive throughout [τ0, τ1]. Also, other difference schemes may
be used instead of (9). We prove that under some reasonable conditions (on the functions fk in (12) and
the difference scheme), the limit points as →∞ of the Newton method (5) are vectors x that correspond
to extremals x(t) = (x1(t), . . . , xp(t)), i.e. curves satisfying the Euler–Lagrange equation

∂

∂xi
L(t, x, ẋ) =

d

dt

(
∂

∂ẋi
L(t, x, ẋ)

)
, i = 1, . . . , p (13)

Thought the Newton-Raphson method has already been used in some approaches to the variational
problems (see [3]), it is usually applied to the solution of the discretized version of (13) which requires the
use of higher order derivatives of L. On the other hand, the approach presented in this paper applies the
Newton-Raphson method directly to the least squares problem (11) which only requires the knowledge of
the gradient.
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2. Discretization Scheme

Let tk := τ0+k h, k = 0, . . . , N and tN := τ1, where N (number of points) and h = (τ1−τ0)/N (step size)
are parameters of the discretization scheme. Given p-dimensional vector function x(·) = (x1(·), . . . , xp(·))
and a set K ⊆ {0, . . . , N}, denote by PK

h x the |K| × p matrix with rows (x1(tk), . . . , xp(tk)) , k ∈ K. For
K = {0, . . . , N} we write Ph, omitting the superscript K.

Approximating a derivative ẋ by a difference, e.g. (9) throughout an interval [τ0, τ1], may cause problems
in one of the endpoints τ0 or τ1, because of the need for an additional point outside [τ0, τ1]. The following
definition sets the notation used in the sequel.

Definition 1. Let {tk := τ0 + k (τ1 − τ0)/N : k = 0, . . . , N} be a regular partition of [τ0, τ1] with step size
h := (τ1 − τ0)/N . Select a subset J ⊂ {0, 1, . . . , N} such that the set of points {tj : j ∈ J } excludes one
or more of the endpoints. Typical choices of J are

{0, 1, . . . , N − 1} , {1, 2, . . . , N} , or {1, 2, . . . , N − 1} .

Let x ∈ C2([τ0, τ1]). The discretization scheme for the derivative ẋ is represented by an |J | × (N + 1)
matrix A such that

APhx = PJ
h ẋ + ϕJx (h)h, (14)

(AI)TPJ
h x = −PI

hẋ + ψIx (h)h, (15)

where
• I = J \ {0, N} is the index set of internal grid points,
• AI is the submatrix of A with columns in I, and
• ϕJx (h) and ψIy (h) are bounded in some neighborhood {h : |h| < ε} of zero.

Relations (14)–(15) of the Definition refdef:A are not easy to verify directly. On the othe hand, the
lemma below provides conditions that are easier to check and apply for a fairly large class of matrices A.

Lemma 1. Let A = (akl) , J , I be as in Definition 1, and let the entries of hA be bounded functions of
h in some neighborhood of 0. Then A satisfies (14)–(15) if and only if the following two conditions hold:
(a) for all k ∈ J

N∑

l=0

akl = 0 ,

N∑

l=0

akl(l − k) =
1
h

, (16)

(b) for all l ∈ I ∑

k∈J
akl = 0 ,

∑

k∈J

akl(k − l) =
1
h

. (17)

Proof. Necessity follows by applying (14)–(15) to an arbitrary affine function y(t) = a + bt , a, b ∈ R .
For sufficiency, we show first that (16) implies (14). For all k ∈ J , applying the Taylor series expansion

with residual term in Cauchy form and (16),

AkPhy =
N∑

l=0

akly(tl)

=
N∑

l=0

akl(y(tk) + ẏ(tk)(l − k)h) +
N∑

l=0

aklÿ(tk + θkl(tl − tk))(l − k)2h2

= ẏ(tk) +
N∑

l=0

aklÿ(tk + θkl(tl − tk))(l − k)2h2,

where all θkl are constants in the interval [0, 1).
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The residual term here can be written in the form(
N∑

l=0

haklÿ(tk + θkl(tl − tk))(l − k)2
)

h = ϕk
y(h)h,

with ϕk
y(h) bounded in some neighborhood of 0 because hA is assumed to have the same property. Therefore

(14) holds for any A satisfying (16).
We next show that (17) implies (15). For all l ∈ I , applying (17)

(Al)TPJ
hy =

∑

k∈J

akly(tk)

=
∑

k∈J

akl(y(tl) + ẏ(tl)(k − l)h) +
∑

k∈J

aklÿ(tl + θkl(tk − tl))(k − l)2h2

= ẏ(tl) +

(∑

k∈J

haklÿ(tl + θ′kl(tk − tl))(k − l)2
)

h

= ẏ(tl) + ψl
y(h)h,

where all θ′kl are constants in the interval [0, 1). Again, ψl
y(h) is bounded in some neighborhood of 0

because hA is assumed to have the same property. Thus (15) holds for such A. ¤

Now, let us show that a wide-known Euler approximation scheme satisfies the condition of Definition 1.

Example 1 (Euler Difference Approximation Scheme). The Euler difference approximation scheme is
defined by the N × (N + 1) matrix A = (akl), where

akl =





−1
h

, k = l ,

1
h

, k = l − 1 ,

0 , otherwise,

for k ∈ J = {0, ..., N − 1} , l ∈ I = {0, ..., N} .
Obviously, in this case the conditions (16) and (17) hold. Therefore, by lemma 1, the Euler approximation

scheme satisfies (14)–(15).

3. Solution of the Discretized Problem

Consider a twice continuously differentiable Lagrangian L(t, u, v), represented as a sum of squares

L(t, u, v) =
m∑

i=1

F 2
i (t, u, v),

where the functions Fi , i = 1, . . . ,m are (at least) continuously differentiable functions.
Combining (12) and (14), we conclude that the problem (6)–(7) can be approximated by the discretized

problem

h
∑

k∈J

m∑

i=1

F 2
i (tk, Zk, AkZ) → min, (18)

Z0 = x0, ZN = x1, (19)

where Ak and Zk are kth rows of the matrices A and Z respectively.
Consider the application of the Newton method (5) to the problem

Fi(tk, Zk, AkZ) = 0 , i = 1, . . . , m , k ∈ J (20)
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obtained from the left sides of (18). If the method converges, we thus obtain a stationary point of the sum
of squares of (18), i.e. a solution z = (zkj) of

m∑

i=1

[
Fi(tk, Zk, AkZ)

∂Fi

∂xj
(tk, Zk, AkZ) +

∑

l∈J

Fi(tl, Zl, AlZ)
∂Fi

∂ẋj
(tl, Zl, AlZ)alk

]
= 0, k ∈ I (21)

with Z0 and ZN given by (19) and j = 1, . . . , p.
Introduce the following notation: for any function G(·, ·, ·), vector s ∈ R|K| and matrices U, V ∈ R|K|×p,

with rows indexed by the set K, let G(s, U, V ) be a vector in R|K| with coordinates G(sk, Uk, Vk), k ∈ K.
The system of equations (21) can be written as

m∑

i=1

[
diag

(
∂Fi

∂xj
(tI , ZI , (AZ)I)

)
Fi(tI , ZI , (AZ)I)+ (22)

(AI)T diag
(

∂Fi

∂ẋj
(tJ , ZJ , AZ)

)
Fi(tJ , ZJ , AZ)

]
= 0, j = 1, . . . , p (23)

that is equivalent to

∂L

∂xj

(
tI , ZI , (AZ)I

)
+ (AI)T ∂L

∂ẋj

(
tJ , ZJ , AZ

)
= 0, j = 1, . . . , p . (24)

Note that (21) can be derived directly from the stationarity condition (4) satisfied by the limit points
z∗ = (z∗ik) of the Newton method (5), applied to (20). Indeed, (21) is a rewriting of

[DF (z∗)]T F (z∗) = 0 . (25)

4. Convergence of the Newton Method to the Solution of the Euler-Lagrange Equation

The Euler–Lagrange boundary value system

∂

∂xj
L(t, y, ẏ)− d

dt

∂

∂ẋj
L(t,y, ẏ) = 0 , j = 1, . . . , p (26)

y(t0) = x0 , y(t1) = x1 , (27)

is a necessary condition for y to be an extremal of (6)–(7).
For further discussion, introduce an operator Bh : R(N+1)×p → R|I| as

Bh(Z) =
(

∂

∂xj
L

(
tI , ZI , (AZ)I

)
+ (AI)T ∂

∂ẋj
L(tJ , ZJ , AZ), j = 1, . . . , p

)
, (28)

for any Z ∈ R(N+1)×p . Then (24) can be written as

Bh(Z) = 0 . (29)

Following the treatment in [4, § 20.1, p. 195], we now formulate the conditions used in the main convergence
result.

(P1) Existence and Uniqueness: The problem (26)–(27) has a unique solution y(·), and for all
sufficiently large N the problem (29)-(19) has the unique solution Yh.

(P2) Stability: There exists positive constants s and γ such that the inequality

‖V − U‖s ≤ γ‖Bh(V )−Bh(U)‖ (30)

holds for any matrices U, V ∈ R(N+1)×p satisfying boundary condition (19) and where ‖ · ‖ is a
componentwise l∞ norm (i.e., for an arbitrary matrix W, ‖W‖ = maxi,j |wij |).

(P3) Consistency: The matrix A representing the difference scheme satisfies conditions (14)–(15).
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A special case when condition (P2) holds is when the operator Bh is linear. This happens when both
∂L
∂x (t, u, v), and ∂L

∂x (t, u, v) are linear in u and v. This, in turn, is true when L(t, u, v) is a quadratic
function in u, v. Conditions for (P3) to hold are given in § 2.

Conditions (P1) and (P3) allow proving the following lemma, needed in the sequel.

Lemma 2. Under assumptions (P1) and (P3) there exists a constant α > 0 such that

‖Bh(Phy)‖ ≤ α h , (31)

for sufficiently small h.

Proof. For simplicity, let p = 1. The general case can be shown in a similar way.
Since y(·) is the solution of (26)–(27), the components of Bh(Phy) corresponding to the boundary

conditions are zeros. We may therefore concentrate on the components indexed by the set I.
Condition (14) implies that for any k ∈ J there exists θk ∈ (0, 1) such that

∂L

∂x
(tk, y(tk),AkPhy) =

∂L

∂x
(tk, y(tk), ẏ(tk) + ϕk

y(h)h)

=
∂L

∂x
(tk, y(tk), ẏ(tk)) +

∂2L

∂x∂ẋ
(tk, y(tk), ẏ(tk) + θkϕ

k
y(h)h)ϕk

y(h)h . (32)

Similarly, for any k ∈ J there exists θ′k ∈ (0, 1) such that

∂L

∂ẋ
(tk, y(tk),AkPhy) =

∂L

∂ẋ
(tk, y(tk), ẏ(tk) + ϕk

y(h)h)

=
∂L

∂ẋ
(tk, y(tk), ẏ(tk)) +

∂2L

∂ẋ2
(tk, y(tk), ẏ(tk) + θ′kϕ

k
y(h)h)ϕk

y(h)h . (33)

Now we apply (AI)T to the vector formed by the first term of (33) with different k. Condition (15)
implies that

(AI)TPJ
h

∂L

∂ẋ
(t, y, ẏ) = −PI

h

d

dt

∂L

∂ẋ
(t, y, ẏ) + ψI∂L

∂ẋ
(t,y,ẏ)

(h)h. (34)

Observe,

PI
h

∂L

∂x
(t, y, ẏ) = PI

h

d

dt

∂L

∂ẋ
(t, y, ẏ). (35)

Adding the right-hand side of (32) with the right-hand side of (33) premultiplied by (AI)T , and using (34)
and (35) we obtain

Bh(Phy) = Rh(y)h,

where Rh(y) is bounded in h in some neighborhood of 0. This completes the proof of the lemma. ¤

Theorem 1 (Convergence Theorem). Let y(·) be a solution of the Euler-Lagrange system (26)–(27) and
Yh be a solution of (19)-(29). Then conditions (P1)-(P3) imply the existence of positive constants γ , s
and α such that

‖Yh − Phy‖s ≤ αγh , (36)

for all sufficiently small h. This implies the convergence of the approximate solution Yh to y(·) as h → 0.

Proof. By Lemma 2 there exists a positive constant α such that (31) holds for sufficiently small h. Using
Condition (P2) with V = Yh and U = Phy, we obtain the existence of positive s and γ such that

‖Yh −Phy‖s ≤ γ‖Bh(Yh)−Bh(Phy)‖
= γ‖Bh(Phy)‖ , since Bh(Yh) = 0
≤ αγh , by (31) ,

proving the existence of positive constants α, γ and s such that (36) holds for sufficiently small h. ¤
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5. Generalizations

In practice it is often important to obtain better precision of the discretization scheme. Theorem 1 can
only guarantee precision of the order h1/s. One straightforward way to improve on that is to impose stricter
condition on the degree of approximation of derivative provided by matrix A. We reformulate (14) and
(15) as follows:

Let ν be an integer ≥ 1. For any y ∈ Cν+1([τ0, τ1])

APhy = PJ
h ẏ + ϕJ

y (h)hν , (37)

(AI)TPJ
hy = −PI

h ẏ + ψI
y(h)hν , (38)

where

• I = {1, . . . , N − 1} is a set of internal grid points,
• AI is the submatrix of A with columns indexed by I, and
• ϕJy (h) and ψIy (h) are bounded in h in some neighborhood of 0.

Condition (P3) will be reformulated now as

(P3 ′) Consistency: The matrix A representing the difference scheme satisfies conditions (37)–(38).

As an immediate result of these more restrictive conditions we obtain the following generalization of the
Lemma 2:

Lemma 3. Under the assumptions of ν + 1 times continuous differentiability of L, existence of unique
solution y(·) of (26)-(27) and (P3 ′) there exists α > 0 such that ‖Bh(Phy)‖ ≤ αhν for any sufficiently
small h.

The proof of Lemma 3 uses the Taylor series development up to degree ν + 1 and the consequences of
(26) which are obtained by differentiating it up to ν times.

Theorem 1 is now generalized to

Theorem 2 (Convergence Theorem). Let y(·) be a solution of the Euler-Lagrange system (26)–(27) and
Yh be a solution of (19)-(29). Then conditions (P1),(P2) and (P3 ′) with an additional requirement of
(ν + 1)–times continuous differentiability of L imply that there exist positive constants γ , s and α such
that

‖Yh −Phy‖s ≤ αγhν , (39)

for all sufficiently small h. This implies the convergence of the approximate solution Yh to y(·) as h → 0.

The proof of the Theorem 2 follows along the lines of the proof of Theorem 1.
We can also generalize Lemma 1 with an analogous proof:

Lemma 4. Let A ,J and I be as in Definition 1, and let the entries of hνA be bounded in h in some
small neighborhood of 0. Then A satisfies the consistency condition (P3 ′) if and only if the following two
conditions hold:
(a) for all k ∈ J

N∑

l=0

akl(l − k)n = 0 , 0 ≤ n ≤ ν , n 6= 1 ,

N∑

l=0

akl(l − k) =
1
h

, (40)

(b) for all l ∈ I
∑

k∈J

akl(k − l)n = 0 , 0 ≤ n ≤ ν , n 6= 1 ,
∑

k∈J

akl(k − l) =
1
h

. (41)
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6. Numerical results

Recall that the integral in (6) is approximated by a sum-of-squares (18)
t1∫

t0

L(t,x(t), ẋ(t))dt ≈ h
∑

k∈J

m∑

i=1

F 2
i (tk, Zk, AkZ)

and a minimum of the sum-of-squares is obtained by attempting to solve the over-determined system (20),

Fi(tk, Zk, AkZ) = 0 , i = 1, . . . , m , k ∈ J .

In some cases it is advantageous to add a constant θ to the Lagrangian, obtaining the problem,
t1∫

t0

(L(t,x(t), ẋ(t)) + θ)dt → min , (42)

subject to (7). This problem is equivalent to (6)–(7), since the endpoints are fixed. The approximation
(18) now becomes

t1∫

t0

(L(t, x(t), ẋ(t)) + θ)dt ≈ h
∑

k∈J

m∑

i=1

(F 2
i (tk, Zk, AkZ) + θ) (43)

and the over–determined system (20)
√

Fi(tk, Zk, AkZ)2 + θ = 0 , i = 1, . . . , m , k ∈ J . (44)

For θ = 0 this reduces to the original system (20). In some problems a small negative θ resulted in faster
convergence. Note, if F 2 > 0 then a negative θ would bring F 2 + θ closer to zero, resulting in smaller
Newton steps. A positive θ is useful if it is necessary to keep the integrand of (42) positive.

The numerical examples below were computed using Matlab . In examples 2-5 we minimize an integral∫ 1
0 L(t, y, ẏ) dt subject to the same boundary conditions,

y(0) = 0 , y(1) = 1 . (45)

In each table, the last column (labeled y(ti)) is the discretized theoretical solution. The initial approxima-
tion z1 is a random perturbation of the discretized theoretical solution.

In example 6 we minimize an integral
∫ 1
0 L(t, x, y, ẋ, ẏ) dt (two dimensional system).

Example 2 (Shortest path problem). The shortest path between (0, 0) and (1, 1) is found by minimizing
an integral of √

1 + ẏ2dt , (46)
subject to (45). The solution is the straight line

y(t) = t , 0 ≤ t ≤ 1 . (47)

The Newton method is applied to the system√
θ +

√
1 + N2(zi+1 − zi)2 = 0, i = 0, . . . , N − 1 (48)

with z0 = 0 , zN = 1. Table 1 gives the first five odd iterations, with N = 10 and θ = −0.5. The solution
(47) is obtained in 9 iterations, see column z9.

Example 3 (A mechanical system with a single particle). Consider the Lagrangian

L(t, y, ẏ) = ẏ2 + y2 . (49)

The corresponding Euler-Lagrange equation is

ÿ = y
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i ti z1 z3 z5 z7 z9 x(ti)
1 0.10 0.06509 0.09610 0.09965 0.09997 0.10000 0.10000
2 0.20 0.21979 0.19784 0.19982 0.19998 0.20000 0.20000
3 0.30 0.28784 0.29360 0.29944 0.29995 0.30000 0.30000
4 0.40 0.43600 0.39623 0.39968 0.39997 0.40000 0.40000
5 0.50 0.53537 0.50024 0.50001 0.50000 0.50000 0.50000
6 0.60 0.60936 0.59669 0.59970 0.59997 0.60000 0.60000
7 0.70 0.69966 0.69834 0.69986 0.69999 0.70000 0.70000
8 0.80 0.83998 0.80201 0.80017 0.80002 0.80000 0.80000
9 0.90 0.93216 0.90423 0.90038 0.90003 0.90000 0.90000

Table 1. Numerical results for Example 2 with θ = −0.5

i ti z1 z4 z7 z11 z15 y(ti)
1 0.10 0.10689 0.08453 0.08536 0.08526 0.08525 0.08523
2 0.20 0.17245 0.16990 0.17158 0.17137 0.17134 0.17132
3 0.30 0.28676 0.25696 0.25951 0.25919 0.25916 0.25912
4 0.40 0.34845 0.34671 0.35004 0.34960 0.34956 0.34952
5 0.50 0.41200 0.44013 0.44407 0.44351 0.44346 0.44341
6 0.60 0.56180 0.53712 0.54255 0.54186 0.54179 0.54174
7 0.70 0.69376 0.63904 0.64648 0.64563 0.64554 0.64549
8 0.80 0.78637 0.75035 0.75668 0.75584 0.75575 0.75571
9 0.90 0.89384 0.86897 0.87437 0.87361 0.87351 0.87348

Table 2. Numerical results for Example 3 with θ = 0

i ti z1 z4 z7 z11 z15 y(ti)
1 0.10 0.07336 -0.02437 0.04157 0.04173 0.04175 0.01505
2 0.20 -0.16079 -0.02964 0.21988 0.22286 0.22326 0.03254
3 0.30 0.25444 -0.03928 0.22029 0.21997 0.21993 0.05531
4 0.40 0.21432 -0.24122 0.21921 0.21894 0.21890 0.08705
5 0.50 0.27846 -0.21274 0.48561 0.48521 0.48515 0.13290
6 0.60 0.35778 -0.29254 0.29230 0.29213 0.29211 0.20030
7 0.70 0.38518 0.73170 0.30523 0.30509 0.30507 0.30018
8 0.80 0.29917 1.43842 0.25401 0.25393 0.25392 0.44873
9 0.90 0.55659 1.21308 0.52032 0.52029 0.52028 0.67004

Table 3. Numerical results for Example 4, with L = F 2 and θ = 0

whose solution, subject to (45), is

y(t) =
et − e−t

e− e−1
(50)

discretized in the last column of Table 2. A reasonable approximation is obtained in 15 iterations.

Example 4. Consider the Lagrangian L = ẏ2 +16y2. Table 3 gives the results for θ = 0, if the Lagrangian
is expressed as a single square

L = F 2 .

The iterations do not converge to the solution y(ti) in the last column. Changing to a sum of two squares

L = F 2
1 + F 2

2 , with F 2
1 = ẏ2 , F 2

2 = 16y2 ,
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i ti z1 z4 z7 z11 z15 y(ti)
1 0.10 0.07336 0.01504 0.01537 0.01535 0.01534 0.01505
2 0.20 -0.16079 0.03264 0.03318 0.03315 0.03314 0.03254
3 0.30 0.25444 0.05568 0.05629 0.05625 0.05625 0.05531
4 0.40 0.21432 0.08784 0.08838 0.08835 0.08835 0.08705
5 0.50 0.27846 0.13419 0.13461 0.13459 0.13459 0.13290
6 0.60 0.35778 0.20208 0.20238 0.20236 0.20236 0.20030
7 0.70 0.38518 0.30233 0.30252 0.30251 0.30251 0.30018
8 0.80 0.29917 0.45096 0.45107 0.45107 0.45107 0.44873
9 0.90 0.55659 0.67174 0.67179 0.67179 0.67179 0.67004

Table 4. Numerical results for Example 4, with L = F 2
1 + F 2

2

i ti z1 z4 z7 z11 y(ti)
1 0.10 0.12005 0.11863 0.11866 0.11866 0.11864
2 0.20 0.34083 0.23607 0.23613 0.23613 0.23610
3 0.30 0.31564 0.35116 0.35124 0.35124 0.35119
4 0.40 0.36509 0.46273 0.46284 0.46284 0.46278
5 0.50 0.41457 0.56969 0.56981 0.56981 0.56975
6 0.60 0.51773 0.67096 0.67108 0.67108 0.67102
7 0.70 0.85670 0.76554 0.76564 0.76565 0.76559
8 0.80 0.75388 0.85247 0.85255 0.85255 0.85250
9 0.90 0.95174 0.93088 0.93093 0.93093 0.93090

Table 5. Numerical results for Example 5

and using θ1 = 0 and θ2 = 0.1 , the method converges in about 15 iterations, see Table 4.

Example 5 (Harmonic oscillator). Consider the harmonic oscillator with Lagrangian L = ẏ2 − y2. We
solve it here using the factorization

1 + L = F 2
1 + F 2

2 , where F 2
1 = ẏ2 , F 2

2 = 1− y2 .

The Euler–Lagrange equation is
ÿ = −y ,

whose solution subject to (45) is y(t) = sin t/ sin(1). Table 5 shows convergence in 11 iterations.

Example 6 (Two dimensional system). Consider a two dimensional system with Lagrangian

L = ẋ2 + ẏ2 + x2 + 2y2 + xy.

on the interval [0, 1]. Numerical procedure uses the factorization

L = F 2
1 + F 2

2 + F 2
3 + F 2

4 + F 2
5

where

F 2
1 = ẋ2,

F 2
2 = ẏ2,

F 2
3 = x2,

F 2
4 = 2y2,

F 2
5 = xy.
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i ti z1 z4 z7 z11 x(ti)
1 0.10 0.02885 0.07398 0.07399 0.07399 0.07395
2 0.20 0.17841 0.15293 0.15294 0.15294 0.15287
3 0.30 0.27635 0.23695 0.23695 0.23695 0.23687
4 0.40 0.30478 0.32625 0.32626 0.32626 0.32616
5 0.50 0.39621 0.42119 0.42119 0.42119 0.42109
6 0.60 0.56539 0.52220 0.52221 0.52221 0.52211
7 0.70 0.59289 0.62987 0.62987 0.62987 0.62979
8 0.80 0.78887 0.74485 0.74485 0.74485 0.74479
9 0.90 0.88808 0.86793 0.86793 0.86793 0.86790

Table 6. Numerical results for Example 6: x component

i ti z1 z4 z7 z11 y(ti)
1 0.10 0.87945 0.84477 0.84477 0.84477 0.84468
2 0.20 0.67758 0.70680 0.70680 0.70680 0.70665
3 0.30 0.57906 0.58374 0.58374 0.58374 0.58355
4 0.40 0.43144 0.47353 0.47353 0.47353 0.47333
5 0.50 0.40934 0.37443 0.37442 0.37442 0.37423
6 0.60 0.29094 0.28492 0.28491 0.28491 0.28473
7 0.70 0.18549 0.20372 0.20371 0.20371 0.20356
8 0.80 0.11711 0.12974 0.12974 0.12974 0.12962
9 0.90 0.09879 0.06208 0.06208 0.06208 0.06201

Table 7. Numerical results for Example 6: y component

Boundary values are x(0) = y(1) = 0 and x(1) = y(0) = 1. Tables 6 and 7 show convergence in 11
iterations.

In the examples above we can see that the initial solution was fairly close to the optimal. However,
these examples were provided mostly to illustrate the idea of the method. We have also made experiments
where the initial solution was very far from the optimal. In these cases the numerical procedure had to
use adaptive θ. Since we currently do not have a solid theoretical framework for this approach we reserve
its presentation for the future.
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