
PRICE-MATCHING COMPETITION IN THE PRESENCE OF STRATEGIC

CUSTOMERS

YOSSI AVIV, ANDREI BAZHANOV, YURI LEVIN, AND MIKHAIL NEDIAK

Abstract. Competition between retailers leads to an increase in the total inventory on the market
while strategic customer behavior works in the opposite direction. Price matching (PM) alters the
balance between these forces by working in the same direction as strategic customers and serves as
a signal that dramatically changes the equilibrium. We show that PM deserves the close attention
of all market participants because it can not only mitigate the loss from strategic customer behavior
but may even lead to gains from increases in the level of this behavior under competition. At the
same time, combined effects of PM and strategic behavior may cause the equilibrium retailer profit
with PM to be less than the worst equilibrium profit without PM. Manufacturer never benefits
from PM except for branded products when the sales at reduced prices are undesirable. On the
other hand, policymakers may encourage PM since it can improve the aggregate welfare.

1. Introduction

In recent years, wide adoption of dynamic pricing strategies prompted concerns that customers
might try to outsmart retail firms by timing their purchases in anticipation of price markdowns over
the course of a sales season. The study of demand management systems facing such phenomenon,
known as strategic customer behavior, has been a subject of extensive research in the Management
Science community; see, e.g., Shen and Su (2007), Aviv and Vulcano (2010), and Aviv et al. (2009).

One of the early key papers to explain the negative impact of strategic customer behavior, Coase
(1972), appears in the economics literature. Coase describes a situation in which a monopolist
sells a durable good to a large set of customers with different valuations. Ideally, the monopolist
could employ perfect segmentation by charging each customer his own valuation. The monopolist
would initially charge a high price from the high-valuation customers, followed by a sequence of
price reductions to capture more and more customers. As a result, the monopolist would extract
all of the customer surplus. In contrast to this ideal scenario, Coase examines what happens if the
customers are strategic. Here, if high-valuation customers anticipate a price decline, they would
rationally expect and wait for a price reduction, instead of buying at premium prices. Coase argues
that as a consequence of such behavior, in equilibrium, the monopolist effectively sells the product
at marginal cost. Indeed, this relatively simple model demonstrates that strategic behavior could
dramatically decrease the monopolist’s revenues. The following intuitive explanation of Coase’s
result is key to understanding many of the ideas and results of the relevant literature in Management
Science. The monopolist in Coase’s paper, also referred to as a “durapolist” in the literature, sells
products to the customers over multiple periods of time. Hence, the monopolist operates in a
competitive situation in which it is engaged in a pricing game against its future “replicas.” As a
result, this self-competition could be highly detrimental to the monopolist’s bottom-line revenue
performance.

Coase (1972) suggests a number of ways for a seller to avoid the adverse impact of strategic
customer behavior. For example, the seller can make a contractual arrangement with the customers
in which he agrees not to sell more than a given quantity of the product. This capacity rationing
proposition has been studied in papers such as Liu and van Ryzin (2008). In the latter paper,
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the authors consider a seller that can deliberately understock a product, hence creating a shortage
risk for the customers and discouraging them from waiting for markdowns. The authors find
that when the market consists of a large number of high-valuation customers, capacity rationing
is useful; otherwise, the firm should serve the entire market at a low price. Moreover, under
competition, the effectiveness of capacity rationing is reduced, and there exists a critical number
of firms beyond which rationing never occurs in equilibrium. Levin et al. (2010) and Cachon and
Swinney (2009) demonstrate the effectiveness of capacity rationing policies, and both provide a
sharper understanding of the intricate relationship between the pricing and quantity decisions; see
also Su (2007) and Su and Zhang (2008).

Another strategy suggested by Coase (1972) is for the monopolist to offer customers a buy-back
agreement. Specifically, if the product is offered at any time in the future at a lower price, the
monopolist agrees to accept product returns and to issue the customers full refund. In fact, in
Coase’s model, this is equivalent to paying the customers the difference between their purchase
prices and the offered discounted price at any time. The rationale behind this strategy is that it
ties the hands of the monopolist’s future “replicas.” Since the customers know that future price
discounts require the retailer to pay back early purchasers, they do not anticipate the monopolist
to offer significant discounts. Consequently, such rational perception drives the strategic customers
to purchase at premium prices. This type of strategy, to which we shall refer as price matching
(PM), is a central subject of our current research.

Companies have long used PM as a promotional tool since, from a customer’s point of view,
it makes company offerings more attractive. To the best of our knowledge, policies considered in
the literature involve either matching a competitor price at the time of purchase (external PM )
or matching the firm’s own price in the future (inter-temporal PM ). Lai et al. (2010) call these
two types concurrent and posterior, respectively. The authors argue that both types of PM are
prevalent in various industries, but also point out that, in practice, these types are often offered
together. Indeed, a check of the BestBuy.com website on May 18, 2014 revealed the following policy
statement:
For previous purchases, should you find a lower price in-store, in print or online from an authorized
Canadian dealer we will beat it by 10% of the difference. Present us with your original receipt within
30 days of purchase. Tell us which competitor is offering the lower price; we will verify the price
and that the item is in stock and available for immediate sale and delivery. If our own price is
reduced present us with your original receipt within 30 days of purchase and we will refund the
difference.
Thus, in practice, matching a competitor’s price can occur during the same period of time as
matching the firm’s own price. In this paper, we consider this comprehensive type of PM.

There is an extensive literature on PM surveyed by Lai et al. (2010) and Nalca et al. (2013).
For example, Salop (1986) shows that concurrent PM (“meeting-competition clause”) can serve a
tool that facilitates collusion among firms, and hence views it as an anticompetitive device. Holt
and Scheffman (1987) is another early article highlighting PM (“best-price provision”) as a tool
enabling tacit collusion. The above research papers do not consider dynamic pricing, strategic
customer behavior, or capacity constraints. Interestingly, we also find that PM may facilitate
collusive capacity decisions resulting in the elimination of clearance sales. In fact, this may happen
even in highly competitive markets. However, such collusion may be advantageous for the local
economy, compared to a market scenario where PM is considered illegal.

Another stream of research on concurrent PM, pioneered by Png and Hirshleifer (1987), explores
PM as a tool for price discrimination between customers that are differentiated by their search
costs, levels of sophistication, and information. This body of work does not consider capacity
constraints, except for Nalca et al. (2013) who explored PM, inventory, and pricing duopoly in an
uncertain demand environment. A particular emphasis of that paper is the role of the availability
verification clause in PM as a discriminating tool. In contrast, our paper considers settings where
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PM cannot be used for price discrimination but rather provides the conditions under which PM
is better than intertemporal price discrimination (without PM). A third group of papers, starting
with Jain and Srivastava (2000), studies concurrent PM as a signal to the customers that the
firm is low-priced (the reader is referred to Winter (2008) for a comprehensive review that include
additional works on the signaling aspect of concurrent PM). In our paper, we discuss the way in
which the signaling role of PM in dynamic environments depends on customer expectations.

Cooper (1986) is the first to show for a duopoly with myopic customers that posterior PM can
be a tool facilitating tacit collusion and the performance of this tool can be close to that of a
perfect cartel. Our paper confirms anticompetitive properties of PM for any arbitrary number of
retailers and shows that, for some market situations, collusion would be impossible in the absence
of strategic customers. Png (1991) considers a monopolist who sells a fixed stock of perishable
items to strategic customers over two periods, and may offer posterior PM. The total number of
customers is fixed, and each of them has a fixed valuation level that can be either low or high.
However, the proportion of high valuation customers is uncertain. The author finds that the seller
favors PM when capacity is large, but leans toward price discrimination as the uncertainty about
the mixture of low/high valuations customers increases. Finally, Lai et al. (2010) studies a two-
period model with strategic customer behavior. Similarly to Png (1991), customers are segmented
into high and low (fixed) valuation segments. The high-valuation segment is additionally split into
strategic and myopic. Myopic customers are further split into those who do and those who do not
claim the PM reimbursement. The paper uses a framework of rational expectations and determines
that PM is beneficial if the difference in valuation levels is neither too low nor too high. The paper
also shows that customer surplus may increase as a result of PM, and that Pareto improvements
in the customers’ surplus and seller’s profit are possible when the variance in the size of the high-
valuation segment is high. When consumers are sufficiently strategic, we also obtain settings where
surplus increases as a result of PM while profits remain constant. Moreover, we find that PM is
welfare-improving in the majority of market situations.

The market setting we consider in this paper is one in which the initial (first period) price is ex-
ogenously set. This is often the case when the manufacturer of a product mandates a manufacturer
suggested retail price (MSRP); e.g., see discussions in Cachon and Swinney (2009) and Liu and van
Ryzin (2008), §4.4. In fact, retailers may follow the MSRP under repeated interactions with the
manufacturer, even if this suggested price is not binding (see, e.g., Buehler and Gärtner (2013)).
MSRP is a special case of a wider phenomenon of “manufacturer’s resale price maintenance” stud-
ied by Orbach (2008) who cites long-standing examples of this practice in the pharmaceutical and
other industries. In the presence of resale price maintenance, the main retailer decision is the quan-
tity of the product. Thus, quantity competition among retailers is another important characteristic
of the market we consider. But then, as products, such as medicines, lose their freshness or go
out of fashion/season, they commonly appear on clearance sales. Butz (1996) cites many sources
indicating that the practice of retail price maintenance is ubiquitous. The author shows “that
manufacturers have many, many instruments to exert control [over resale price] and to some extent
will do so whether or not the law permits it.” Butz presents an argument that the concurrent PM
(the actual term used is “meet-the-competition provisions”) becomes one of such tools when the
manufacturer finance rebates for the retailers who charge the suggested retail price.

Intuitively, the efficacy of posterior PM depends on the degree to which the customers exhibit
strategic behavior. Such behavior exerts a downward pressure on the equilibrium product quantity
in the market effectively becoming an opposing force to competition which tends to increase the
supply. We show that whenever PM changes the equilibrium structure, the aggregate procurement
quantity (total inventory) decreases, leading to a higher second-period price. The paper determines
the conditions under which the retailers can mitigate the loss from strategic customer behavior by
using PM, and examines how the level of competition affects this mitigation. Additionally, we show
that when PM results in sales in both periods, this effectively voids the MSRP; thus, signaling to
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the manufacturer that the first-period price is too high. Finally, we augment the above theoretical
insights with some illustrations in §5, showing that different types of PM equilibria can result in
gains or losses exceeding the direct losses from strategic customer behavior.

2. Model description

We consider a two-period model of a competitive market in which n retailers, indexed by the
set I = {1, . . . , n}, sell a limited-lifetime product. For clarity in our analyses and discussions, we
assume that they are identical. As mentioned in the introduction, the first-period price, p1, is fixed
(e.g., MSRP). The retailers select their profit-maximizing inventory levels in anticipation of the
market outcome. The per-unit cost of inventory is c, which obviously includes the cost charged
by the manufacturer, but also embeds the retailer’s effort to increase its “market attraction.” We
assume that the unit cost is equal for all retailers, driven in part by our market structure in which
the manufacturer is common, the product is undifferentiated, and the retailers operate under similar
conditions; see, e.g., §4.4 in Liu and van Ryzin (2008). Since the retailers know the market and
consider PM as a strategic-behavior mitigating tool, we assume that they set their PM policies
at the same time they select their inventory levels. Let yi denote the inventory (capacity) of
retailer i at the beginning of the season, and mi ∈ {0, 1} be retailer i’s decision on utilizing a PM
policy (where 0 and 1 mean “no” and “yes,” respectively); define the vectors y =

(

y1, . . . , yn
)

and

m =
(

m1, . . . ,mn
)

accordingly. In the second period, the retailers are “free” to select their own
prices, but we assume that under the competitive market structure, they converge to a price that
clears the market (see, e.g., Dixon (2001)). To this end, we utilize a Cournot model to predict
the second (clearance) period price as a function of the remaining inventory at the end of the first
period. For example, Flath (2012) shows that products such as bicycles, records, and thermos
bottles are appropriately described by the Cournot model.

In the first period, the market consists of regular customers with a mass normalized to 1, without
loss of generality (change of scale). The first-period valuations of these regular customers are drawn
from a uniform distribution on the interval [0, 1]. Two essential parameters in our model affect the
customers’ behavior. First, we use a parameter, β ∈ [0, 1], to capture a typical decrease in valuations
for seasonal and limited lifetime products. For example, a fashion product may lose 25% of its value
(i.e., β = 0.75) – from a customer’s standpoint – if that customer purchases the product at the end
(second period) rather than at the beginning (first period) of the season. We refer to this parameter
as product durability. We confine our analysis to the interesting case in which β > c, which means
that some regular customers may be willing to purchase at a price that is above cost in the second
period. If that is not the case, it is easy to show that any PM-equilibrium would have to result
in sales in the first period only. Second, recall that a strategic customer is one that considers the
possibility of postponing the time of purchase to the second period, by taking into account the
possible price reduction and product availability in that period, as well as the PM payback (that
would become irrelevant if the customer postpones the purchase). We use the parameter ρ ∈ [0, 1),
to which we refer as the level of strategic behavior, as a factor (weight) that the customers apply to
the expected second-period surplus and to any reimbursements from PM. In particular, a value of
ρ close to 1 means that the market consists of customers that are “fully” strategic, whereas ρ = 0
means that the customers are myopic (i.e., they always purchase in the first period if the price p1
yields a non-negative surplus). The customers are homogeneous in their level of strategic behavior.

Similarly to Lai et al. (2010) and Cachon and Swinney (2009), we assume that in addition to
the regular customers, there is an infinite number of bargain-hunting customers who can buy any
number of units during the second period, at a unit salvage value s < c. Alternatively, one can
think of this situation as a market setting in which remaining inventory can be returned to the
supplier for a reimbursement of s per unit (e.g., through buyback agreements, or the ability of the
supplier to divert the product to a secondary market channel).
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Obviously, a key challenge in the theoretical study of markets with strategic customers, is the
identification and characterization of market equilibria. To this end, one must pay careful attention
to the assumptions regarding the information available to the decision makers: the customers and
the retailers. For instance, in mature markets, where manufacturers regularly launch new versions
of similar products, the retailers are typically able to conduct comprehensive customer behavior
studies. In this vein, we assume that the retailers can determine how PM decisions affect the
first-period demand. Additionally, we assume that the customers can form stable expectations
regarding the price changes and product availability in the second period. Yet, similar to Lai et al.
(2010), the customers observe only the retailers’ PM-policies but not the inventory levels. Thus, we
analyze the market using a game theoretical framework that follows the sequence of events listed
below.

First, the customers form rational expectations about the second period market for all possible
combinations of retailers’ PM offerings. Second, given the customers’ expectations, the retailers
determine their PM policies and inventories. Third, sales are realized for the first period (see
discussion in §2.2 for details). Finally, in the second period, if units of the product remain on shelf,
the retailers engage in clearance sales, and, if they use PM, they reimburse the difference in prices
between two periods.

2.1. Customer Behavior. Contingent on the PM offering information m, the customers form
rational expectations about the product availability and the price in the second period, and make a
decision about purchasing at the price p1 or waiting for the second period. We model their behavior
according to the following lines. Customers, who do not observe inventories, form expectations via
two key parameters: first is the expected availability, ᾱ (m) ∈ {0, 1}, which indicates whether
inventory will be left at the end of the first period, and hence will be cleared. Second, in case that
inventory is left (ᾱ (m) = 1), is the expected clearance price p̄2 (m). For brevity of exposition,
when there is no risk of confusion, we may avoid the explicit functional notation, using ᾱ and p̄2
in short.

Confined to the pair (ᾱ, p̄2) for given m, the customers make their buy-or-wait decisions using
a hierarchical procedure, as follows. At first, each customer would compare the price p1 to its
valuation v. If v < p1, the customer will wait for the second period. Otherwise, the customer, who
can gain an immediate surplus of (v − p1), will bring into consideration the second period – the
essence of strategic behavior. Specifically, a customer who considers buying from a PM retailer will
calculate the net gain that can be achieved in the second period by postponing the purchase; i.e.,
in addition to the loss of the immediate surplus (v − p1). That net gain consists of two values: (i)
the expected PM payback that will be forgone due to the wait; and (ii) the expected surplus that
would be gained in the second period. Altogether, we have

∆ (v) , −ᾱ (p1 − p̄2)
+ + ᾱ (βv − p̄2)

+ .

Recall that we use the parameter ρ to express the degree of strategic behavior in the market.
Following this approach, a customer with valuation v ≥ p1 will attempt to purchase a unit from a
PM retailer in the first period if ρ∆(v)−(v − p1) ≤ 0. But observe that this functional expression is
always decreasing in v, and hence, because ρ∆(p1)− (p1 − p1) ≤ 0, we conclude that any customer
with valuation larger than the threshold

vmin
1 (ᾱ, p̄2) = constant = p1 (1)

will attempt to buy a unit from a PM retailer. Since vmin
1 does not depend on expectations, we

drop its functional dependence on (ᾱ, p̄2) in the rest of the paper. When a unit is not available at a
PM retailer, the customer considers purchasing from a non-PM retailer. In such case, the decision
would be based on whether (v − p1) ≥ ᾱρ(βv − p̄2)

+. Here, it is easy to verify that there are
three cases of interest: (i) p1 ≤ p̄2/β, for which the valuation threshold p1 would be adopted; (ii)
p̄2
β ≤ p1 ≤ 1− ᾱρ (β − p̄2), for which the threshold (p1 − ᾱρp̄2) / (1− ᾱρβ) would be adopted; and
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(iii) p1 ≥ 1−ᾱρ (β − p̄2), for which no customer would buy the product in the first period, effectively
using the threshold 1. In summary, any customer with valuation larger than the threshold

vmin
0 (ᾱ, p̄2) = max

{

p1,min

{

p1 − ᾱρp̄2
1− ᾱρβ

, 1

}}

(2)

will attempt to buy a unit from a non-PM retailer in the first period. The above analysis demon-
strates that an opportunity to buy from a PM retailer completely eliminates strategic customer
behavior, regardless of its level ρ, the durability of the product β, or the expectations (ᾱ, p̄2). How-
ever, it is not clear when such elimination of strategic behavior is beneficial for the participants in
the market.

2.2. First-Period Sales Distribution Among Retailers. In this section, we present a sales
allocation mechanism, which allows for the calculation of sales during the first period, denoted by
the vector q =

(

q1, . . . , qn
)

. First, we assume that the first-period demand is allocated among the
retailers with PM; then, the unsatisfied demand (due to stockouts) is split among the retailers that
do not offer PM. Inside each group of retailers, customers buy in the order of their valuations.
Second, we assume that the ability of a retailer to attract sales is proportional to its level of
inventory.

To a certain degree, this model specification is in congruence with our uniform per-unit cost
assumption, discussed in the beginning of the section: retailers that bring larger capacity could
possibly enjoy economies of scale in procurement costs, but on the other hand may want to spend
more on sales efforts in order to attract reasonable demand. The proportional allocation mechanism
is not always the standard assumption. Admittedly, we utilize this assumption in order to enable
us to obtain clear and relatively-elegant theoretical results. For similar reasons of gaining analytical
tractability, papers such as Zhao and Atkins (2008), Liu and van Ryzin (2008), and Bazhanov et al.
(2015) have considered alternative allocation schemes.

Let n1 be the number of PM retailers, and let Y1 be the aggregate inventory for those retailers;
similarly, define n0 and Y0 for the non-PM retailers. Moreover, consider specific expectations (ᾱ, p̄2)
for the corresponding PM policies m. The total demand that the PM retailers experience in the
first period is (1− p1) as driven by the threshold value vmin

1 = p1. Therefore, there are three special
cases of interest, that depend on the aggregate inventory Y1. (i) In case that Y1 ≥ 1− p1, the PM
retailers satisfy all of the demand, each selling a quantity qi = (1− p1) ·yi/Y1, whereas the non-PM
retailers do not make any sales. Additionally, the regular customers remaining for the second period
would have valuations uniformly distributed in the range [0, βp1] at that time. (ii) In case that
1−vmin

0 (ᾱ, p̄2) ≤ Y1 < 1−p1, the PM retailers cannot satisfy all of the demand. Thus, the sales for
the PM retailers are given by qi = yi, serving the valuation segment [1− Y1, 1]. Next, since the latter
segment turns its demand to the PM retailers, and since vmin

0 (ᾱ, p̄2) ≥ 1−Y1, it is easy to see that
the non-PM retailers will experience no demand. Consequently, the regular customers remaining
for the second period would have valuations uniformly distributed in the range [0, β (1− Y1)] at that
time. (iii) In case that Y1 ≤ 1− vmin

0 (ᾱ, p̄2), the situation with the PM retailers remains the same
as in case (ii). However, here it is easy to verify that the non-PM retailers would sell the quantities

qi = min
(

(

1− Y1 − vmin
0 (ᾱ, p̄2)

) yi

Y0
, yi

)

. The regular customers remaining for the second period

would have valuations uniformly distributed in the range
[

0, β ·max
{

1− Y1 − Y0, v
min
0 (ᾱ, p̄2)

}]

at
that time.

2.3. Second-Period Clearance Sales. Since the product offerings are undifferentiated, the re-
tailers lower their prices until all remaining inventory is cleared; i.e., the second period price p2
(identical for all retailers) would be set to a sufficiently low level that would make demand equal to
the total remaining inventory. It is noteworthy that since PM and inventory decisions are made at
the same time and the demand is deterministic, a retailer would never have to withhold previously
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acquired inventory from clearance because of the PM. Instead, a rational retailer simply avoids
stocking any inventory that is not eventually sold.

Let Y , Y1 + Y0 and Q , Q1 +Q0. Following the analysis in the previous section, we anticipate
that inventory will be left only when vmin

0 (ᾱ, p̄2) > 1− Y . In such case, clearance of the inventory
(i.e., completing the sales of all of the original inventory Y ) can be made either by targeting
the customer with the original valuation of (1− Y ), by setting p2 = β (1− Y ). Or, turning to
the stream of bargain-hunters, by setting p2 = s. Obviously, the second-period price that would
maximize revenue is

p2 = max {s, β (1− Y )} , (3)

which is independent of the PM offers present in the market.
In the rest of the paper, we limit our attention to situations in which the second period valuations

are sufficiently high so that β > s/p1 (a condition similar to the logical restriction β > c). If this
condition does not hold, it is possible to show that, in a two-period equilibrium, the second period
price cannot exceed s, vmin

0 = p1 under rational expectations, and strategic customer behavior has
no effect on any of the possible equilibria.

2.4. The First Period Capacity and Price-Matching Decisions. We continue our analysis
by looking at the retailers’ profit optimization problems in the first period. Recall that since the
second-period market is cleared, each retailer’s second period inventory (equals to its sales) is given
by yi − qi. Obviously, because of the interactions among the retailers, we must describe any given
retailer’s profit as a function of the other retailers’ decisions as well as the customers’ expectations
(ᾱ(m), p̄2(m)). To this end, define y−i, m−i as the vectors of inventories and PM decisions of all
retailers except i. We can now present the objective functions for the retailers:

ri(yi,mi, y−i,m−i, ᾱ(mi,m−i), p̄2(m
i,m−i))

= −cyi + p1q
i + p2(y

i − qi)− qi(p1 − p2)
+ · 1

{

{Y > Q} ∩
{

mi = 1
}}

(4)

where the qi-values depend on the values (yi,mi, y−i,m−i, ᾱ(mi,m−i), p̄2(m
i,m−i)), as explicitly

described in §2.2. We conclude that the best response of retailer i belongs to a set of (yi,mi) pairs:

BRi
(

y−i,m−i, ᾱ(·,m−i), p̄2(·,m−i)
)

, Argmax
yi,mi

{

ri(yi,mi, y−i,m−i, ᾱ(mi,m−i), p̄2(m
i,m−i))

}

,

where notation ᾱ(·,m−i), p̄2(·,m−i) emphasizes the dependence of the best response set on the
expectations corresponding to either value of mi ∈ {0, 1} but only the given value of m−i.

Using the set of best responses, one can proceed to characterize general Nash equilibria in the
retailer game. However, our primarily focus is on two levels: the level of competition and the level of
strategic behavior. The retailers are identical and it is natural to consider cases when they behave
in the same way. As we show in §3 below, the resulting symmetric equilibria cover almost 100%
of all inputs. One cannot rule out the existence of asymmetric equilibria and they may provide
some additional insights, but, given a rich collection of results obtained for the symmetric case, the
asymmetry would merely distract from the main effects considered in this paper.

In a symmetric pure-strategy Nash equilibrium each retailer makes the same PM decision m̂
and procures the same fraction 1

n Ŷ of the total inventory Ŷ . Additionally, we consider sym-
metric expectations characterized by only two pairs of values (ᾱ(m̂, m̂, . . . , m̂), p̄2(m̂, m̂, . . . , m̂))
and (ᾱ(1− m̂, m̂, . . . , m̂), p̄2(1− m̂, m̂, . . . , m̂)) corresponding to, respectively, the equilibrium PM
profile (m̂, m̂, . . . , m̂) and any possible one-retailer deviation. Formally, since expectations de-
pend only on the first argument, we drop the remaining arguments in the rest of the paper. For
duopoly, symmetry of expectations requires an assumption that the customers can identify the
PM decision that constitutes a deviation. For given symmetric expectations ᾱ(·), p̄2(·), a sym-

metric equilibrium is a pair (m̂, Ŷ )[ᾱ(·), p̄2(·)] (a pair (m̂, Ŷ ) as a function of ᾱ(·), p̄2(·)) such

that (m̂, 1
n Ŷ ) provides a best response to a symmetric strategy profile of other retailers, i.e.,
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(m̂, 1
n Ŷ ) ∈ BRi

(

( 1n Ŷ , . . . , 1
n Ŷ ), (m̂, . . . , m̂), ᾱ(·), p̄2(·)

)

, where ( 1n Ŷ , . . . , 1
n Ŷ ) and (m̂, . . . , m̂) are

n− 1 dimensional vectors, which stand in for y−i and m−i respectively.

2.5. Rational Expectations Equilibrium. In order to gauge the effect of PM, a participant of
the market (a retailer, a manufacturer, or a local regulator) must first be able to understand which
equilibria are possible for that particular market scenario. In order to predict market outcome, we
utilize a rational expectations equilibrium framework. Specifically, we identify the set of decisions,
made by the retailers and the consumers, such that they are optimal in the sense described earlier,
but are also consistent with the customers expectations (ᾱ(·), p̄2(·)). That is, the equilibrium
inventory levels and PM decisions of the retailers must lead to precisely the same observed product
availability and clearance prices as expected by the customers. Recall that, according to (3), the

observed second period price corresponding to the total inventory Ŷ is equal to max{s, β(1− Ŷ )}.
Moreover, if the total first-period sales corresponding to (m̂, Ŷ ) are Q̂, then the observed second-

period availability is 1{Ŷ > Q̂}. Thus, we define rational expectations symmetric equilibrium
(RESE) in pure strategies as follows:

Definition 1. The tuple (m∗, Y ∗, α∗(·), p∗2(·)) is a RESE if

• m∗ and Y ∗ are a symmetric equilibrium PM decision and a total inventory level correspond-
ing to symmetric expectations α∗(·) and p∗2(·), i.e., (m∗, Y ∗) = (m̂, Ŷ )[α∗(·), p∗2(·)];

• the expected and the observed equilibrium second-period availabilities and prices coincide,
i.e., for the corresponding first-period sales Q∗, α∗(m∗) = 1 {Y ∗ > Q∗} and p∗2(m

∗) =
max {s, β(1− Y ∗)};

• and, for a single retailer deviating from m∗ into a different PM strategy 1 − m∗ and this
retailer’s optimal inventory decision y′, we have, for the corresponding first-period sales Q′

under the deviation, α∗(1−m∗) = 1
{

n−1
n Y ∗ + y′ > Q′} and

p∗2(1−m∗) = max
{

s, β(1− n−1
n Y ∗ − y′)

}

.

The last requirement of the above definition clarifies why expectations have to depend on the
PM profile. In the absence of such dependence, expectations may not match the availability and
clearance price observed under the deviations. Thus, a deviating retailer may be able to take
advantage of these irrational expectations breaking the equilibrium as the result. On the other
hand, if customers adjust expectations when they see a PM deviation, the deviator no longer has
this unfair advantage.

For retailers, it is important to know which outcomes can emerge depending on the market
situation. From the model perspective, the market situation is described by particular model
inputs and potential outcomes correspond to the equilibria that exist in the retailer game. In the
next section, we characterize all possible equilibria in closed form starting with those using PM.
This characterization facilitates analysis of the impact of PM on retailers, consumers, and the local
economy. Moreover, switches between equilibrium types due to changes in the inputs (such as the
levels of strategic behavior or competition) inform market participants about potential jumps in
profits, consumer surplus, and welfare.

3. Characterization of RESE

There are two fundamental types of RESE that can potentially arise in the proposed model:
with PM and without PM. We will refer to them, respectively, as PM and either N if no-PM is
the retailer’s decision or NA if PM is not available for other reasons. Each of these principal types
are further classified into subtypes based on the structure of the market outcome. In particular,
whether sales occur in both or only in one of the periods, and in which period they occur. We
discuss PM first, and then contrast it with no-PM equilibria.
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3.1. Price-matching RESE. When PM is used by all retailers, there are two types of equilibria
which differ in how customers interpret the PM offers: whether or not the clearance sales should
be expected. As we show, the equilibrium with (without) the second-period sales is characterized
by relatively high (low) MSRP. The reader will also see that, in competitive markets (n ≥ 2), for
sufficiently high level of strategic behavior and cost-to-durability ratio there is even an interval
of MSRP where the equilibria of both types exist. This indicates that consumer expectations is
the only determinant of PM equilibrium structure in such markets. The persistence of equilibria
is ensured, per standard game theory reasoning, because it is not rational for a profit-maximizing
retailer to deviate unilaterally. Overall, the characterization drives the point that strategic customer
behavior critically affects the equilibrium type and the resulting profit.

Following the general logic of Nash equilibrium in the retailer game, we consider two types
of one-retailer deviations: into a no-PM strategy with its corresponding best-possible inventory
decision and a PM and inventory strategy that also changes the availability of the product. The
second type of deviation is possible because the profit function is discontinuous at the point where
Y = Q. For example, in the first part of the theorem, customers rationally expect that the product
is available in the second-period under the equilibrium PM and inventory strategies, i.e., α∗(1) = 1
and Y ∗ > Q∗ = 1 − p1. The PM-deviation by retailer i in that case would result in a smaller
total inventory level Y ′ = yi + n−1

n Y ∗ = 1 − p1 = Q′ and no availability in the second period:
α = 1 {Y ′ > Q′} = 0. The comparison of the the associated profits leads to a quadratic inequality
in p1 (keeping all other inputs fixed) resulting in condition (1.2). Similarly, the comparison with
a no-PM deviation leads to (1.1) under the additional condition of rationality of clearance price
expectations p∗(0) in a no-PM deviation. We provide a point-by-point discussion of the conditions
immediately following the theorem. In the rest of the paper, v∗ is the equilibrium value of vmin

1 ,
which, along with other equilibrium values, may be explicitly identified with the type of RESE,
e.g., v∗,PM1 or Y ∗,PM2 if necessary.

Theorem 1. If PM is possible, the PM-equilibria with the following structure exist if and only if
the respective conditions hold:

PM1 (Clearance sales, α∗ = 1): v∗ = p1, p
∗
2 = c + β−c

n+1 , Y
∗ = n

n+1

(

1− c
β

)

, and r∗ =

(β−c)2

(n+1)2β
under conditions

(1.1)
c

β
< CB1(ρ, β, n) ,

1− 2ρ+ ρ2β

(1− ρβ)2 + (1− β)ρ[n− (1− ρβ)]
, p1 ≥ P11 , 1− n− 1 + ρβ

n+ 1

(

1− c

β

)

or

(1.2)
c

β
≥ CB1(ρ, β, n) and p1 ≥ P12(c, β, n),where P12 is the larger root of a quadratic equation;

PM2 (No clearance sales, α∗ = 0): v∗ = p1, Y
∗ = 1−p1, and r∗ = 1

n(p1−c)(1−p1) under
conditions

(2.1)
c

β
< CB2(ρ, β, n) ,

1− 2ρ+ ρ2β

(1− ρβ)2 + (1− β)nρ2β
, p1 ≤ P21 ,

c

β

(1− ρβ)2

1− 2ρ+ βρ2
; or

(2.2)
c

β
≥ CB2(ρ, β, n) and p1 ≤ P22(c, β, n),where P22 is the larger root of a quadratic equation.

All bounds P11, P12, P21, and P22 are greater than
c
β if n < ∞, ρ > 0, and β < 1; P11, P12, P22 → c

β

as n → ∞, and P21 =
c
β if either ρ = 0 or β = 1;P11, P12, P22 → 1 as c

β → 1.

Condition p1 ≥ P11 in part (1.1) guarantees that a possible deviator into no-PM has sales only in
the second period under rational expectations in a deviation, i.e., α∗(0) = 1 and vmin

0 (α∗(0), p∗2(0)) >
1− n−1

n Y ∗. As a result, the effective price in this case is the same for both PM and no-PM retailers
implying that the best deviator profit and inventory level remain the same as before the deviation.

Since valuation threshold vmin
0 (α∗(0), p∗2(0)) =

p1−ρp∗
2
(0)

1−ρβ (associated with the demand of a deviating
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no-PM retailer) depends on ρ, the resulting rational expectation of clearance price p∗2(0) = β(1−Y ∗)
changes with the level of strategic behavior. As shown in the proof, no-PM deviations under other
conditions would dominate.

Condition p1 ≥ P12 in part (1.2) results from a quadratic inequality stating that PM deviator
profit with sales only in the first period does not exceed the equilibrium one: (p1 − c)yi = (p1 −
c)(1− p1 − n−1

n Y ∗) ≤ r∗. The threshold value P12 is the larger root of the corresponding quadratic
equation. Intuitively, an increase in competition reduces the ability of a single retailer to control
the availability of the stock in the second period. Therefore, p1 ≤ P12 becomes less restrictive with
an increase in n as shown in Corollary 2 below and illustrated in Figure 2 (the area of inputs where
PM1 exists increases in n).

In part (2), customers rationally expect no sales in the second period when all retailers use PM.
Condition p1 ≤ P21 in (2.1) guarantees that the retailer’s equilibrium profit is not dominated by the
profit of a deviator into no-PM with sales in both periods. Similarly to (1.1), the level of strategic
behavior enters this condition through the dependence of vmin

0 on ρ which affects the resulting
rational p∗2(0). Condition p1 ≤ P22 in (2.2) guarantees that the deviator’s profit into PM with sales
in both periods does not exceed the equilibrium one (similarly to (1.2), this profit comparison leads
to a quadratic inequality). Any other forms of deviations do not dominate equilibrium profits.

Theorem 1 also points to a special role played by the cost-to-durability ratio c
β . Indeed, low values

of this ratio in combination with a relatively high first-period price lead to high profitability of the
second-period sales, which is one of the key determinants of the equilibrium structure. Cost-to-
durability thresholds CB1 and CB2 provided in the statement are the intersection points of the pairs
of p1-boundaries P11, P12 and P21, P22, respectively. In particular, when c

β < CB1, the condition

p1 ≥ P11 (comparison with a no-PM deviation) is more restrictive than p1 ≥ P12 (comparison with
PM deviation). We illustrate the areas of existence of PM1 and PM2 equilibria in the (p1, c/β)
cross-section of the parameter space for ρ = 0.3, n = 4, and β = 0.5 in Figure 1. Both CB1 and CB2

are simultaneously positive, zero, or negative depending on the level of strategic behavior (since
both denominators are positive, and the numerator is positive if and only if ρ <

(

1−√
1− β

)

/β).
When CB1 and CB2 are positive, CB1 ≤ CB2 ≤ 1 where the first inequality is strict unless
β = 1, ρ = 0, or n = 1. Moreover, when β = 1 or ρ = 0, both CB1 and CB2 equal one. As a
result, positive CB1 and CB2 split cost-to-durability ratio values into relatively low, intermediate,
and high ranges (0, CB1), [CB1, CB2), and [CB2, 1) that determine the functional forms of the
equilibrium boundaries. For a specific cost-to-durability ratio, the classification depends on other
inputs because, as follows from above, a given c

β can be less than CB1 only for small levels of

competition (if β < 1 and ρ > 0) and strategic customer behavior.
Equilibrium PM1 includes the cases with low and intermediate cost-to-durability ratio and rel-

atively high first-period price leading to attractive sales in the second period. All customers with
v ≥ p1 buy in the first period and obtain reimbursement p1 − p∗2 in the second one. The customers
with v ∈ [p∗2, p1) wait for clearance sales. Since the effective price for all customers is p∗2, we call
this a “clearance” PM equilibrium.

In the case of PM2, the intermediate and high cost-to-durability ratio, as well as low p1, make
two-period sales with reimbursement less attractive than first-period sales only. All customers
with valuations p1 or higher buy in the first period. Retailers divide the profit associated with
the total inventory that is just enough to cover the first-period market. Since the inventory is
determined by externally set MSRP, retailer competition is effectively eliminated and this case can
be interpreted as an MSRP-facilitated collusion. Since there are no second-period sales we refer to
PM2 as a “no-clearance” equilibrium. PM2 cannot exist if customer valuations remain constant
(β = 1 implies P21 = c and CB2 = 1). This outcome is intuitive because the less the decrease in
customer valuations between two periods, the more profitable the second-period sales. In either of
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Figure 1. PM1 and PM2 regions in the (p1, c/β) slice of the parameter space for
fixed ρ = 0.3, n = 4, and β = 0.5
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Figure 2. Fractions of model inputs where a particular PM RESE structure exists
for given n

these two PM-equilibria, customers behave as if they are myopic and, consequently, inventory level
Y ∗ and profit r∗ do not depend on the level of strategic behavior.

The fraction of model inputs where PM-equilibria exist is illustrated in Figure 2 as a function
of 1 ≤ n ≤ 1, 000. The fraction is computed by volume in the region of all inputs (ρ, β, c, s, p1)
satisfying the feasibility constraints 0 ≤ ρ < 1, 0 ≤ s < c < β ≤ 1, and max{ s

β , c} < p1 ≤ 1.

The figure is an area plot that shows the fractions of inputs resulting in a particular equilibrium
structure (PM1 only, both PM1 and PM2, PM2 only, and neither PM1 nor PM2) as the heights
of the respective shaded areas for each n. As n increases, the fraction of inputs where PM1 exists
increases. However, the fractions of inputs with PM2 only, both PM1 and PM2, as well as neither
equilibrium decrease.

Figure 2 only provides information with respect to the level of competition. The corollary below
augments it by establishing a full set of monotonic properties of the PM1 and PM2 regions. In
particular, it characterizes the overlap of PM1 and PM2 as well as the area where neither PM
equilibrium exists.

Corollary 2. (1) If CB1 > 0, for low cost-to-durability ratio c
β < CB1, we have P21 < P11 and

there are no PM-equilibria for P21 < p1 < P11. Moreover, P11 = P12 = P21 if c
β = CB1.
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(2) For any c
β , we have P12 < P22 if n > 1 and P12 = P22 = P2 ,

1
2

[

1 + c+
√

(1− β) (1− c2/β)
]

if n = 1. Therefore, for high cost-to-durability ratio c
β ≥ CB2 (possible only if β < 1, ρ > 0)

there is an overlap P12 ≤ p1 ≤ P22 in the MSRP-range of PM1 and PM2 existence. In this
overlap, r∗,PM1 < r∗,PM2 if n > 1 and r∗,PM1 = r∗,PM2 if n = 1.

(3) If c
β > CB1 > 0, then P12 < P21. Thus, for n > 1 and intermediate cost-to-durability

ratio CB1 ≤ c
β < CB2 (possible only if β < 1, 0 < ρ < (1 − √

1− β)/β), there is an

overlap P12 ≤ p1 ≤ P21 in the MSRP-range of PM1 and PM2 existence. In this overlap,
r∗,PM1 < r∗,PM2.

(4) Inequality c
β ≥ CB1 is equivalent to a lower bound on ρ.

(5) The lower p1-bounds P11, P12 and upper p1-bounds P21, P22 depend on inputs as follows:
c β ρ n

P11 ր ց ց ց
P12 ր ց ≡ ց
P21 ր ց ր ≡
P22 ր ց ≡ ց

The overlap in MSRP ranges of PM1 and PM2 equilibria established in Corollary 2 (Parts 2
and 3) is exclusive for oligopolistic PM-retailers and intermediate values of MSRP. That is natural
because the monopolist optimally chooses whether to supply the product in one or both periods.
For competitive settings, very low MSRP means that the second-period regular-customer market is
small and has an extremely low margin. In contrast, a very high MSRP means that the first-period
market is very small. Thus, the possibility of either type of equilibrium arises only for intermediate
MSRP. Moreover, by Part 4, since c

β ≥ CB1 in the overlap, it can take place only if customers are

sufficiently strategic. Thus, it is natural that customer expectations start to affect the equilibrium
outcome. While PM2 is always better for competing retailers in the overlap, the magnitude of
its difference with PM1 deserves a further study and we return to it in subsequent sections. The
overlap does not exist for a monopoly, the highest-possible level of durability, or myopic customers.

While Theorem 1 provides a complete characterization of PM equilibria for a given market
situation, market participants may want to forecast adjustments to equilibrium structure when the
market situation changes. By Part 5 of Corollary 2, the areas where PM1 or PM2 exist expand
when customers become more strategic. The changes in other parameters affect the areas of PM1
and PM2 existence in the opposite way. For example, when the level of competition increases, the
area of PM1 expands while the area of PM2 shrinks.

The knowledge of possible shifts in the equilibrium structure is of particular importance when
a market situation is close to the boundary between equilibria with notably different profits. In
such situations, equilibrium can be unstable with respect to parameter changes or misestimations.
Part 1 of Corollary 2 implies that for small levels of strategic behavior, i.e., ρ <

(

1 −√
1− β

)

/β,
which yields CB1 > 0, PM equilibria may not exist. This observation stimulates an interest in the
properties of equilibria when the PM-option is not available or when PM is available but remains
unused. These equilibrium structures are considered below.

3.2. RESE when PM is not available (NA). For our study of PM we use the benchmark
game where PM is not available. As shown by Bazhanov et al. (2015), there are four types of
symmetric rational expectations NA equilibria identified in Theorems 3 and 5 cited below. Here
and in other no-PM equilibria, we use v∗ to denote the equilibrium value of vmin

0 . Similarly, these
theorems provide the equilibrium expectations α∗(0) and p∗2(0) in the absence of PM. When PM is
not available, the expectations α∗(1) and p∗2(1) corresponding to a one-retailer deviation into PM
are undefined.

Theorem 3. A unique NA with the stated structure exists if and only if the respective conditions
hold:
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NA1 (No sales in the first period): v∗ = 1, α∗(0) = 1, p∗2(0) = c + β−c
n+1 , Y

∗ = n
n+1(1 −

c/β), and r∗ = (β−c)2

(n+1)2β
under condition p1 ≥ 1− n

n+1ρ(β − c) , PN
1 .

NA2 (No sales in the second period): v∗ = p1, α
∗(0) = 0, Y ∗ = 1− p1, and r∗ = 1

n(p1 −
c)(1− p1) under condition p1 ≤ nc

n−1+β , PN
2 .

NA3 (Sales in both periods, p∗2 > s): v∗ = p1−ρβ(1−Y ∗)
1−ρβ , α∗(0) = 1, p∗2(0) = β(1 − Y ∗),

where Y ∗ is the larger root of a quadratic equation, and
r∗ = 1

n [(p1 − c)(1− v∗) + (p∗2 − c)(Y ∗ − 1 + v∗)] under condition PN
2 < p1 < PN

1 and one
of the following:
(a) n−1

n (p1 − s) (1− v∗)Y ∗ ≤ (c − s)(1 − s/β)2, or (b) condition (a) does not hold, Y ∗ <

1−s/β, and r∗ ≥ r̃i, where r̃i is the maximum profit of a firm deviating from this equilibrium
in such a way that p2 = s (the total inventory is greater than 1− s

β ).

The equilibrium characteristics Y ∗, v∗, and r∗ are continuous on the boundaries between these
forms of NA. Moreover, under NA3, Y ∗ > max

{

n
n+1

(

1− c
β

)

, (1− p1)
}

.

The following proposition shows the relationships between p1-bounds in NA and PM-equilibria.

Proposition 4. (1) The area of NA2 existence is always inside the area of PM2 existence, i.e.,
PN
2 ≤ min {P21, P22} .

(2) For n > 1, the area of NA1 existence is always inside the area of PM1 existence, i.e.,
PN
1 > P11 and PN

1 ≥ P12 (strict for β < 1). For n = 1, the area of PM1 existence is always
inside the area of NA1 existence, i.e., PN

1 = P11 and, for c
β > CB1, P

N
1 < P12.

Notably, there are inputs for which either PM equilibrium can be realized if retailers use PM,
or a price-discriminating equilibrium NA3 is realized if PM is not available. Due to differences in
equilibrium structures, the change in profit can be discontinuous when PM becomes available.

For a monopoly (n = 1), Theorem 3 exhaustively covers all feasible parameter values. Starting
from a duopoly, there is an area of inputs where none of the equilibria described in Theorem 3 may
exist. At the same time, for oligopoly retailers with strategic customers, by the theorem below,
there exists one more form of NA with sales in both periods and p∗2 = s (NA4). This form exists
only inside the p1-range of NA3, i.e., there exists a non-empty set of input parameters where both
NA3 and NA4 may exist and, by Proposition 4, either PM1 or PM2 may exist if PM is available.

Theorem 5 (“Salvaging” NA4: p∗2 = s). NA with v∗ = p1−ρs
1−ρβ , α∗(0) = 1, p∗2(0) = s, Y ∗ =

n−1
n

p1−s
c−s (1 − v∗), and r∗ = p1−s

n2 (1 − v∗) exists if and only if one of the following mutually ex-
clusive conditions hold:

(a) salvaging is forced on retailers, i.e., n−1
n Y ∗ ≥ 1− s

β ;

(b) condition (a) does not hold and the deviator profit is strictly increasing in the interval corre-

sponding to p2 > s, which is equivalent to 1− s
β > n−1

n Y ∗ ≥
(

1− s
β

)2 c+βv∗−2s
β(1−s/β)2+(p1−β)(1−v∗)

;

(c) conditions (a) and (b) do not hold, Y ∗ > 1 − s
β , and either the deviator profit is strictly

decreasing in the interval corresponding to p2 > s (in this case the deviator profit never
exceeds r∗), or r∗ ≥ r̃i, where r̃i is the maximum deviator profit in this interval.

Conditions of NA3 and NA4 existence indicate proximity of the market situation to a boundary
of the area of existence. Namely, if the equilibrium exists only because the equilibrium profit r∗

exceeds the profit of a potential deviator r̃i (condition (b) for NA3 and (c) for NA4), the equilibrium
can be very sensitive to parameter changes.

Proposition 6. (1) NA4 exists only if c−s < n−1
n

β(1−s)2

4(β−s) (otherwise, there are no p1 and ρ leading

to p∗2 = s) and p1 < PN
4 , 1−ρ(β−s) (otherwise, NA4 form of v∗ does not permit sales in the first

period). Moreover, PN
4 < PN

1 and p1-bounds are equivalent to upper bounds on ρ, with ρN4 ,
1−p1
β−s
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and ρN1 , n+1
n

1−p1
β−c > ρN4 . (2) For any inputs where both NA3 and NA4 exist, r∗,NA4 < r∗,NA3.

Moreover, r∗,NA4 < 1
n(p1 − c)(1− p1).

Proposition 6 implies, first, that NA4 exists only when the unit salvage value is relatively close
to the cost and when the first-period price is relatively low, resulting in first-period sales that are
enough to compensate for the second-period loss. Since the p1-upper bound in NA4 is strictly below
PN
1 , the p1-upper bound in NA3, NA4 never coexists with NA3 if p1 ∈ [PN

4 , PN
1 ). If NA4 exists

for ρ = 0, keeping other inputs fixed, it may also exist for ρ < ρN4 . Thus, part (2) of Proposition 6
in conjunction with a nonempty range [ρN4 , ρN1 ) may lead to a substantial “discontinuous” gain
from increasing strategic behavior. Indeed, for ρ ∈ [ρN4 , ρN1 ), NA4 does not exist and no other
NA-equilibria may exist except NA3, whose profit is higher than that of NA4.

3.3. RESE without PM when PM is available. An introduction of a PM decision into the
retailer game increases the set of possible strategies. Thus, in the PM-game, no-PM equilibria may
still exist but under more restrictive conditions than in the no-PM game since a retailer has an
additional dimension to deviate. We denote by N an equilibrium where the PM option is available
but not used. A formal statement (Proposition 16, Appendix), which is illustrated in Figure 3,
shows that the additional flexibility for retailers in the form of PM-option indeed restricts the areas
of existence of N-equilibria (except for N2 and N1 for n > 1) in comparison with the corresponding
areas of NA-equilibria. These additional restrictions can be interpreted as conditions of “stability”
of NA-equilibria with respect to PM option.

The information about PM-policy gives an additional signal for customer expectations. For
example, if p1 is relatively high, implying sales in the second period, the declaration of PM by a
profit-maximizing retailer may lead to a higher p2 than without PM since, under PM, p2 cannot
be below unit cost. On the other hand, if p1 and β are relatively low, any second-period sales may
result in p2 < c. In this case, the declaration of PM implies the absence of second-period sales.

According to the definition of RESE, customer expectations need to be specified both for a
symmetric PM decision profile and for all one-retailer deviations into no-PM. In this section, α∗(0)
and p∗2(0) specify equilibrium expectations for a symmetric no-PM strategy profile, while α∗(1) and
p∗2(1) — for a one-retailer deviation into PM. Rational customer expectations associated with a
deviation determine two different subtypes of N3, which we call N3.1 (for α∗(1) = 0) and N3.2 (for
α∗(1) = 1). Both these subtypes correspond to an otherwise identical NA3 structure. A summary
of these outcomes is presented visually in Figure 3(a) as fractions of NA3 instances. There is a
very small area of inputs where both N3.1 and N3.2 can exist. The incidence of N3.1 and no-N3
quickly diminishes and tends to zero as the market approaches perfect competition (n → ∞). On
the other hand, N3.2 type becomes dominant and absorbs the entire NA3 area as n → ∞.

The behavior of fractions of NA4 instances is similar but the decreases in N4.1, an overlap of
N4.1 and 4.2, and no-N4 are more rapid. The highest values of these fractions occur in a duopoly
and are, respectively, 7.0%, 0.17%, and 0.26%.

N1 and N2 equilibrium types cannot exist for the inputs where PM-equilibria do not exist. On
the other hand, N3 and N4 can exist. We examine the fractions of no-PM model instances, where
N3 and/or N4 exist, visually in the area plot of Figure 3(b). The overwhelming majority of no-PM
instances corresponds to N-equilibria. The remaining fraction of no-PM instances where neither
N3 nor N4 exist is too small to be seen on the figure (its maximum over n is just 0.044%).

For brevity, we use N(A) to refer to either N-equilibrium if PM is available but retailers do not
use it or NA if PM is not available due to other reasons. Visualizations of possible equilibrium
types across model inputs are provided in Figures 5 and 6 (illustrating Examples 1 and 3 in §5).
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Figure 3. For given n, fractions of inputs resulting in different types of
(a) N3 within NA3 (b) N within no-PM
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4. When is PM beneficial for participants of the market?

By affecting the equilibrium, PM impacts all participants of the market. Thus, in this section,
we consider PM effects on retailers in terms of their profit, on the manufacturer in terms of the
total inventory, and on the customers in terms of the surplus, as well as on the local economy in
terms of the aggregate welfare.

4.1. PM effect on retailer profits. As shown above, the availability of the PM option does
not always lead to the existence of RESE with PM. But even if PM1 or PM2 exists, there are
areas of inputs where PM-equilibria coexist with various forms of N(A), and it is not obvious that
PM-profits are always greater in these areas. Indeed, it turns out that PM leads sometimes to a
lower total profit than N(A)3 and/or N(A)4.

Assuming that, for given inputs, equilibria X and Y exist (possibly in different games), we

say that X is beneficial (equivalent, detrimental) for retailers compared to Y if benefit BX,Y ,

r∗,X − r∗,Y > 0 (BX,Y = 0, < 0). Equilibrium X is beneficial (equivalent, detrimental) in an area
of inputs if it is beneficial (equivalent, detrimental) for any inputs in this area.

Figure 4 (a) displays the area plot of fractions of PM1 inputs where N3 and/or N4 may also
exist (implying the existence of NA3 and/or NA4 for these inputs). The overlap is quite large, and
Figure 4 (b) shows that PM1 is detrimental compared to N3 and/or N4 in approximately 30% of
the model inputs where PM1 coexists with either PM2 or N3 and/or N4. Recall that, depending
on n, as illustrated in Figure 2, PM1 exists in approximately 10% to 70% of the volume of model
inputs. Hence, up to 20% of possible model inputs may lead to a PM equilibrium that is detrimental
compared to a RESE without PM.

The plot for the overlap of PM2 with N3 and/or N4 is similar to Figure 4 (a) with the only
difference that the cumulative fraction of the overlap is around 80% for n = 2 and approaches
100% for n closer to 100. However, unlike PM1, PM2 is either beneficial or equivalent to all other
RESE in the areas of coexistence. For a monopolist, PM1 coexists only with N1, therefore the
n-axes in the plots of Figure 4 start from n = 2.

The proposition below provides conditions for the dominance of an equilibrium profit either
under PM, or N(A)3 and N(A)4. For the convenience of exposition, we use r∗,N3, r∗,N4 instead

of r∗,N(A)3, r∗,N(A)4, and we let w2 denote the ratio of profits r∗,PM1 over r∗,N4, normalized by
n2/(n+ 1)2, i.e., w2 , (β − c)2(1− ρβ)/{β(p1 − s)[1− p1 − ρ(β − s)]}.
Proposition 7. (1) For any inputs in the overlap of PM1 and the corresponding N(A),

(1.1) r∗,PM1 < r∗,N3 if p1 > 1− n
n+1(β − c) and c ≥ 3β − 2

(

1 + 1−β
n

)

;
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Figure 4. For given n, (a) fractions of PM1 instances where PM1 coexists with N3
or N4; (b) fractions of the intersection of PM1 instances with PM2 and N3 or N4
where the profit of the corresponding RESE is the greatest

(1.2) r∗,PM1 > r∗,N4 if and only if either w > 3
2 , or 1 < w ≤ 3

2 , and n > 1
w−1 (w increases

in ρ).
(2) For any inputs in the overlap of PM2 and the corresponding N(A),

(2.1) r∗,PM2 ≥ r∗,N3 with strict inequality if n > 1 or n = 1 and p1 < P21;
(2.2) r∗,PM2 > r∗,N4.

Part (1.1) implies that PM1 can be less profitable than N(A)3 when the product is not durable
because, as we mentioned above, low durability decreases the second-period profits and, conse-
quently, the attractiveness of PM1. Indeed, the lower bound on c in part (1.1) holds for any c and
n if β ≤ 2

3 and never holds for β > 4+c
5 .

By part (1.2), since w increases in ρ, the more strategic customers are, the lower the mini-
mum level of competition n when PM1 is beneficial compared to N(A)4. The necessary condition

w > 1 for PM1 to be beneficial is equivalent to a lower bound on PM1 profit, i.e. (β−c)2

β >
(p1−s)(1−p1−ρ(β−s))

1−ρβ .

4.2. PM effect on the total inventory. An important part of this investigation is the PM effects
on retailer inventory policies with the associated impact on all participants of the market. The
total inventory, in turn, affects the existence of the second-period sales and, when these sales exist,
the second period price. The results are summarized in the following proposition.

Proposition 8. For the same inputs except PM-policy, in the areas where a PM-equilibrium and
N(A) coexist, the total inventory under PM is not greater than under N(A), namely,

(1) PM total inventory and prices are the same as under N(A) if PM1 coexists with N(A)1 or
PM2 coexists with N(A)2;

(2) PM total inventory is less than under N(A) if PM1 or PM2 coexists with N(A)3 or N(A)4.

Hence, when the introduction of PM changes the realized RESE structure, the total inventory
decreases. This result is consistent with the literature that shows that PM, by encouraging early
purchases, allows retailers to increase prices (Png (1991), Lai et al. (2010)). In contrast, Nalca
et al. (2013) showed that concurrent PM with availability checks may increase total inventory
when retailers, facing uncertain demand, have stockouts.
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Given that the wholesale price is fixed, the smaller inventory reduces the manufacturer’s profit.
Therefore, a current-profit-maximizing manufacturer, that is able to set the first-period price, may
want to prevent the use of PM by retailers. On the other hand, a branded product manufacturer
may prefer retailers to sell only at MSRP to maintain product reputation (e.g., Orbach (2008)),
supporting PM2 as a result. The manufacturer’s benefits from this support depend on the particular
conditions of PM2 because the first-period price of branded products is usually high whereas PM2
exists for relatively low p1.

Compared to N(A)3 or N(A)4, PM1 does not bring any benefits even for a branded product
manufacturer. If PM1 is realized in the areas of equilibria coexistence, it means that retailers,
using PM, avoid too high an MSRP. This situation is a signal for the manufacturer to target a
lower first-period price. Alternatively, the manufacturer may negotiate a restriction against using
PM. This no-PM restriction may benefit retailers, because, as shown in the previous subsection,
retailer profits under PM1 may be even lower than under “salvaging” N(A)4, which is the worst
RESE for retailers in a no-PM game (Figure 4 (b) and part (1.2) of Proposition 7).

4.3. PM effects on customers and the local economy. The above results partially support
the findings in the literature that PM may be used as an anti-competitive practice. Indeed, recall
that the price in PM2 is regulated by MSRP and, when another RESE with a lower second-period
price is also possible, PM2-profit is always higher. If PM is not available and NA2 (which is
equivalent to PM2 in profit) exists, then, as n increases, the outcome changes to NA3 or NA4 with
p2 < p1. On the other hand, PM2 is guaranteed to exist for such inputs. Thus, a declaration of
PM under PM2 merely serves as a tool to avoid competitive pricing. Customers do not receive any
reimbursements.

The interpretation of PM as anti-competitive is not that obvious for another PM-equilibrium
PM1, where PM is not just a declaration, and customers do obtain reimbursements in the second
period. This RESE is the most beneficial for retailers in approximately 40% to 50% of inputs for
which the other RESE may also exist. On the other hand, there is a significant share of inputs
(Figure 4 (b)) where PM1 is detrimental compared to no-PM equilibria N(A)3 and even “salvaging”
N(A)4. When PM1 is indeed detrimental for retailers, it is not clear whether it is beneficial for
customers compared to N(A)3 or N(A)4. PM1 is indeed better than N(A)3 or N(A)4 for high-
valuation customers who buy in the first period because their surplus is larger under PM1 due to
reimbursements. In contrast, the low-valuation customers, who would buy in the second period
under N(A)3 or N(A)4, are worse off under PM1 because, by Proposition 8, the PM-price is always
higher than the second-period price under N(A)3 or N(A)4. Such mixed effects of PM raise a non-
trivial question: is it possible that a PM-equilibrium is beneficial for the total customer surplus
and/or aggregate welfare?

The total equilibrium customer surplus is Σ = Σ1+Σ2, where Σ1 and Σ2 are the first-period and
second-period surpluses respectively. We consider the actual or realized surplus, which is greater
than the expected surplus. In the latter one, the second-period surplus would be discounted by ρ
similarly to the individual second-period surplus used to determine the customer choice of buying
or waiting. In contrast, the actual surplus measures the realized customer benefits depending on a
type of RESE. The present value of the surplus is not an adequate measure for this purpose because
it ignores or underestimates the realized second-period surplus of customers if they are myopic or,
respectively, have low ρ.

The result below shows that PM1 is better for customers than N(A)1 and PM2.

Proposition 9. For the same inputs, the change of equilibrium structure from N(A)1 to PM1
increases the total customer surplus except for a durable product (β = 1) and p1 = 1 when the
surplus remains the same; the change from any structure to PM2 decreases the surplus.

Moreover, for the local economy (excluding the manufacturer), PM is socially beneficial in terms

of the aggregate welfare W , Σ + nr for the inputs where N(A)1 and PM1 coexist. Indeed, the
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total profit nr is the same in both equilibria, whereas, under PM, part of sales occur in the first
period where customers enjoy fresh product effectively paying the reduced second-period price due
to the reimbursements. For n ≥ 2, PM1 can exist for the same inputs as N(A)3 or N(A)4. For
n = 2, the fraction of inputs with a welfare-increasing switch from N(A)3 to PM1 is 81.5% (of the
inputs where both NA3 and PM1 exist), and this fraction increases in n. For N(A)4, the fraction
of inputs where PM1 improves W is even higher.

This result complements the finding of Lai et al. (2010) for a single retailer, who show, contrary
to the literature, that PM can increase customer surplus when the uncertainty of the high-end
market volume is high. In our setting, PM can be surplus- and welfare-improving even without
uncertainty, e.g., when p1 and ρ are sufficiently high leading to N(A)1 and PM1 existence.

Unlike PM1, PM2 is always disadvantageous for customers. However, by Proposition 7, PM2
is profitable for retailers, which raises a non-trivial question about the welfare-improving ability
of PM2. PM2 improves W for n = 1 in 78% of inputs where PM2 and NA3 exist: intermediate
p1, relatively high difference c − s, high ρ and small β. Similarly to PM1, this share increases in
n. In the area where PM2 and NA4 exist: s close to c, high ρ, n, and low β, p1. This share starts
from 99.9987% for n = 2 and increases in n. Thus, the local policymakers may help the retailers to
escape from the “salvaging” N(A)4 by encouraging the use of PM.

Hence, when retailers operate under anti-competitive MSRP, another “collusive” tool – PM –
improves social welfare for the local economy in most of the cases when customers are strategic.
This effect results, first, from the fixed first-period price and, second, from an increase in the first-
period sales. The latter effect increases the first-period surplus and the total profit — always under
PM2 and, in some cases, under PM1 despite reimbursements since the second-period price is higher
under PM1 than under no-PM equilibria. When PM is welfare improving, these increases exceed
the loss of the second-period surplus under PM2 or a decrease in it under PM1.

5. Effectiveness of PM in counteracting strategic customer behavior

While previous sections provided qualitative description of PM-effects, the results below show
that possible benefits or losses from PM can be essentially higher than losses from strategic cus-
tomers. We contrast the cases of monopoly and oligopoly because the effects of PM are more
pronounced under competition and can be qualitatively different in these two cases.

5.1. PM performance. This subsection introduces a suitable measure of PM performance as
a profit-increasing tool relative to the effect on profit from an increase in the level of strategic
behavior. Assume that all inputs except ρ are fixed and customers are more strategic for ρH than
for ρL < ρH . Moreover, in the no-PM game, one of NA equilibria (denoted as NAL) is realized
for ρL and, possibly, another NA equilibrium (denoted as NAH) is realized for ρH . Finally, a
PM equilibrium is realized when customers are more strategic (Figures 5(b)), while the theoretical
existence of a no-PM equilibrium with the same structure as NAH in the PM-game is not excluded.
The corresponding no-PM profits are r∗,NAH at ρH and r∗,NAL at ρL. The PM-profit at ρH is
r∗,PM .

Suppose the increase in ρ leads to a loss in the no-PM game, namely, r∗,NAH − r∗,NAL < 0. The
performance of PM as a tool for mitigating the loss from customer strategic behavior is the ratio of

the benefit from PM at ρH to the absolute value of the loss, i.e., η(NAL,NAH,PM) , r∗,PM−r∗,NAH

r∗,NAL−r∗,NAH .

For brevity, we omit the arguments of the measure when it does not lead to confusion. This measure
is negative when PM is detrimental, η ∈ (0, 1] when PM leads to a mitigation, and η > 1 when PM
results in a gain. For example, η = 1 means that PM mitigates 100% of the loss from increase in
ρ. Theoretically, η can go to infinity when the change in ρ is close to zero, the profit in the no-PM
game is continuous in ρ, and r∗,PM − r∗,NAH is separated from zero due to discontinuous changes
in the equilibrium structure resulting from the introduction of PM.
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Similarly, suppose the increase in ρ leads to a gain in the no-PM game, e.g., as a result of the
switch from NA4 to NA3 or under NA3 for large ρ and β. The performance of PM as a tool for
enhancing the gain from increasing strategic behavior is the ratio of the benefit from PM at ρH to

the absolute value of the gain, i.e., η(NAL,NAH,PM) , r∗,PM−r∗,NAH

r∗,NAH−r∗,NAL .

We keep to the following refinement of the notion “the gain from increasing strategic behavior.”
If equilibria A and B exist for both ρH and ρL < ρH with r∗,A|ρ=ρH < r∗,A|ρ=ρL < r∗,B|ρ=ρH , A is

realized only for ρL, and B is realized only for ρH , the difference r∗,B|ρ=ρH − r∗,A|ρ=ρL > 0 cannot
be conclusively considered a gain from increased ρ because the reason for the switch to B is not
necessarily related to the increase in ρ. This difference may be a gain from another undetermined
factor causing the switch.

Since equilibria can be multiple for both PM and no-PM, and for both ρH and ρL, the analysis
below is concentrated on the cases when the benefits from PM are maximal as well as on the cases
when PM is detrimental with the description of the corresponding areas of inputs.

5.2. Monopoly. We first consider the case of monopoly because of its analytical simplicity and
qualitative differences from oligopoly. In particular, PM benefits neither the retailer nor customers
if customers are myopic. Indeed, by Theorems 1 and 3 with myopic customers, a two-period PM-
equilibrium (PM1) and a no-PM equilibrium without first-period sales (N(A)1) exist only in a
degenerate case with p1 = 1. A PM-equilibrium without second-period sales (PM2) exists only
for a non-durable product (β < 1) and overlaps only with a no-PM equilibrium that has the same
structure (N(A)2). Thus, when customers are myopic and the drop in valuations is relatively low,
the major area of inputs belongs to a no-PM price-discriminating equilibrium N(A)3 (“salvaging”
equilibrium N(A)4 does not exist for a monopolist).

The situation changes when customers are strategic and the product is not durable. Findings
below, illustrated in Figure 5, specify the dependence of PM-benefits on the market parameters.
In particular, there is an area leading to a PM-benefit only for the monopolist. This area, the
overlap of PM2 and NA1, is not covered by Proposition 7 and exists only for high levels of strategic
behavior. Indeed, the following lemma (illustrated in Figure 5(b)) shows that PM-equilibria exist
only for sufficiently high ρ.

Lemma 10. For n = 1, the conditions of PM-equilibria existence p1 ≥ P11 and p1 ≤ P21 are

equivalent to lower bounds on ρ : ρ ≥ 2(1−p1)
β−c , ρPM1, and ρ ≥ 1

β

[

1−
√

p1(1− β)/(p1 − c)
]

,

ρPM2 respectively, where ρPM2 ∈ (0, 1], ρPM2 → 0 if p1β → c+ 0, and ρPM2 = 1 if β = 1.

Recall that the boundaries of PM-equilibria (Theorems 1 and Corollary 2) and their intersection
points are such that P12|n=1 = P22|n=1 = P2 and CB1|n=1 = CB2|n=1 = CB.

Proposition 11. (1) A PM-equilibrium is beneficial for a monopolist compared to a no-PM
equilibrium in and only in the union of (1.1) the overlap of PM2 and NA1 leading to benefit

BPM2,NA1 = (p1 − c)(1 − p1) − (β−c)2

4β > 0 that is constant in ρ, decreasing in β and

increasing in c; and (1.2) the overlap of PM2 and NA3 leading to benefit BPM2,NA3 =
βp1−c
2−ρβ

[

p1(1− β)− (1− ρβ)2(p1 − c)
]

> 0 that is increasing in ρ.

(2) Retailer is indifferent between PM and no-PM equilibria in and only in the union of the
overlaps of PM1 and N(A)1, PM2 and N(A)2, and the boundary between N3 and PM2.

(3) PM is less profitable than price discrimination (and, consequently, PM is not used) if and
only if c

β < CB, p1 >
c
β and ρ < min{ρPM1, ρPM2}.

Moreover, PM-equilibria never lead to a gain from an increase in ρ.

The proposition illustrates the nature of the relations between p1-bounds in PM and N(A)-
equilibria. When the second-period sales are relatively attractive, i.e., cost-to-durability ratio is
low ( cβ < CB), PM can be preferred to price discrimination (N3) only if the level of strategic
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Figure 5. RESE for n = 1, β = 0.85 in (a) (c/β, p1) cross-section of inputs for
fixed ρ = 0.7; and (b) (ρ, p1) cross-section for fixed c = 0.1

behavior is high. When the second-period sales are less attractive, i.e., c
β ≥ CB, PM is always no

worse than price-discrimination. In this case, bound P2, which does not depend on ρ, separates
two forms of PM-equilibria — with sales in both periods (PM1) and only in the first one (PM2).

For a monopolist, PM-equilibria, when they exist, are never detrimental. However, PM never
leads to a gain from increased strategic behavior. The following example illustrates Proposition 11.

Example 1. p1 = 0.4, β = 0.85, c = 0.1, ρL = 0.65, ρH = 0.95.

Price-discriminating no-PM equilibrium NA3 exists for both ρ (Figure 5(b)) and, if PM is
not available, the loss from increased ρ is r∗,NA3|ρ=0.95 − r∗,NA3|ρ=0.65 = 0.170294 − 0.180010 =

−0.009716. If PM is available at ρH , PM2 is realized (ρH > ρPM2 = 1−
√
0.2

0.85 = 0.6503) with r∗,PM2 =
0.18, which mitigates almost all the loss. The performance of PM is η(NA3,NA3,PM2) = 0.9989.
The performance decreases with the difference ρPM2 − ρL (ρL moves to the left from ρPM2).

5.3. Oligopoly. This subsection shows that in the oligopoly, unlike monopoly, PM can lead to
substantial gains from strategic behavior as well as amplify losses depending on the market situation.

The competitive case has the following major differences from monopoly: “salvaging” equilibrium
N(A)4, which may coexist with N(A)3, and the area of coexistence of PM1 and PM2. These
differences lead to a much richer pattern of overlaps of PM and no-PM equilibria than under
monopoly. The analysis of PM in the overlaps is simplified by the following results obtained
above: (i) PM2-profit always exceeds the profit of PM1 (Corollary 2); (ii) N(A)3-profit always
exceeds the profit of N(A)4 (Proposition 6); (iii) PM2 is always beneficial compared to N(A)3
and 4 (Proposition 7). By (ii) and (iii), the maximum benefit from PM2 belongs to the area where
PM2 overlaps with N(A)4, which is specified in the following proposition.

Proposition 12. For given inputs with ρH > 0, let PM2 and N(A)4 exist and, additionally,
N(A)4 exists for the same inputs except ρL < ρH . Then PM2 at ρH leads to a gain from increased
strategic behavior, bounded from below by η(NA4,NA4,PM2)|ρL=0 as follows: η(NA4,NA4,PM2) ≥
η(NA4,NA4,PM2)|ρL=0 = 1 + (1−ρHβ)(1−p1)[n(p1−c)−(p1−s)]

(p1−s)ρH(p1β−s)
> 1.
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The following example illustrates the minimum value of η(NA4,NA4,PM2)|ρL=0 in n (attained
at n = 2) for moderate values of other parameters (the existence of the equilibria in the examples
below is shown in the appendix).

Example 2. n = 2, ρL = 0, p1 = β = ρH = 0.5, c = 0.1, s = 0.05.

The performance of PM is η(NA4,NA4,PM2)|ρL=0 = 1 + 3
4 · 0.5·(0.8−0.45)

0.45·0.5·0.2 = 1 + 3·0.35
0.36 , i.e., the

increase in profit due to the introduction of PM2 at ρ = 0.5 is almost four times greater than the
loss of profit under NA4 due to increased strategic behavior from ρ = 0 to ρ = 0.5. This gain is
impossible without strategic customers because, for these data and small ρ, PM2 does not exist.

The case p1 = β used in Example 2 also provides a simple characterization of inputs where PM1
is beneficial compared to NA3:

Proposition 13. Under the conditions of PM1 (Theorem 1) and NA3 (Theorem 3) with p1 = β,

r∗,PM1 > r∗,NA3 if and only if β > 1+c
2 and either ρ > 21−β

β−c , or ρ ∈
(

1−β
β−c , 2

1−β
β−c

]

and n >
1−β

(β−c)ρ−1+β .

This proposition shows that PM1 is never beneficial compared to NA3 for β close to c, namely,
for β ≤ 1+c

2 . If the necessary conditions β > 1+c
2 and ρ > 1−β

β−c hold, PM1 may be better for retailers

than NA3. PM1 is better for any level of competition n if the level of strategic behavior is quite
high, i.e., ρ > 21−β

β−c , and for sufficiently high n > 1−β
(β−c)ρ−1+β , if the level of strategic behavior is

moderate i.e., ρ ∈
(

1−β
β−c , 2

1−β
β−c

]

.

PM1 is beneficial compared to NA4 for p1 = β only if (β − c)2 > β(β − s)(1− β−ρs
1−ρβ ), which, by

part (1.2) of Proposition 7, is equivalent to w > 1. This condition never holds for β close to c and,
when it holds (for large ρ), PM1 is beneficial for large n.

There is an important qualitative difference between PM1 and PM2 that should not be neglected
by retailers. The difference is that, under competition, PM1 may be detrimental compared to no-
PM equilibria N(A)3 or 4. This property leads to the situation that can be called a PM-trap for
retailers. Assume, for the following data, that retailers are not using PM and N(A)4 is realized.

Example 3. n = 3, ρ = 0.5, c = 0.1, s = 0.05, p1 = 0.7, β = 0.25.

Figure 6(a) shows RESE types in the neighborhood of these inputs in a (ρ, p1) cross-section of the

feasible inputs for fixed n = 3, c = 0.1, s = 0.05 and β = 0.25. For these inputs, r∗,N(A)4 = 0.0165,
and PM can be beneficial since PM2 exists and r∗,PM2 = 0.06, which is 3.6 times higher than
r∗,N(A)4. However, the attractive comparison of r∗,PM2 with r∗,N(A)4 may work as a bait in a trap.
For these inputs, there also exists PM1 with the profit r∗,PM1 = 0.0056, which is approximately 1/3

of r∗,N(A)4. The example illustrates Theorems 1, 5 and Corollaries 2, 7 showing that, depending on
customer expectations, PM can lead to losses when theoretically, for the same inputs, a beneficial
equilibrium exists.

The differences in PM-trap profits may be even higher, e.g., for the same data except p1 = 0.85
and β = 0.15 (the equilibria exist by the same conditions), namely, r∗,N(A)4 = 0.0096, r∗,PM2 =

0.0375 (3.9 times higher than r∗,N(A)4), and possible outcome r∗,PM1 = 0.00104 is 9.2 times less

than the initial profit r∗,N(A)4. The area of the PM-trap shrinks with n since CB1 and CB2 decrease
to zero in n and both P12 and P22 go to c

β , reducing to zero the area of coexistence of PM1 and

PM2.
If retailers are trapped in the detrimental PM1, it is profitable for the manufacturer to help them

out by adding to the contract a “no-PM” condition since, by Proposition 8, Y ∗,N4 always exceeds
both Y ∗,PM1 and Y ∗,PM2. However, local policymakers may counteract manufacturer activity be-
cause the aggregate welfare W is greater for PM1 in both examples. Besides the PM-trap, the
overlap of N(A)4 with PM1 and PM2 contains the inputs where r∗,PM1 > r∗,N4. By part (1.2) of
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Figure 6. RESE in the neighborhoods of inputs of (a) Example 3: (ρ, p1) cross-
section for fixed n = 3, c = 0.1, s = 0.05 and β = 0.25; and (b) Example 4:
Equilibrium profit as a function of ρ for fixed p1 = β = 0.5, n = 4, c = 0.1, s = 0.

Proposition 7, these inputs correspond to larger ρ, n, and differences β − c. In this area, W is still
greater for PM1, and the only part of the market suffering from PM is the manufacturer.

Example 3 quantifies the result of Proposition 7 showing the amount by which PM1-profit may be
less than the least profit without PM. Compared to no-PM equilibria, PM1 can become detrimental
when the level of strategic customer behavior is increasing even if it was beneficial for lower values
of ρ. The following example shows the extent of the negative effect in this case.

Example 4. n = 4, p1 = β = 0.5, ρH = 0.65, ρL = 0.2, c = 0.1, s = 0.

This example illustrates another PM-trap for retailers, which can be called a “regulator-facilitated
PM-trap.” The regulators may encourage retailers to switch to another equilibrium (with PM) at
ρ = 0.32 (Figure 6(b)) since, under PM1, both retailers’ profit and welfare are higher than under N4
(WPM1 = 0.34 > WN4 = 0.26). For larger ρ, there also exist equilibria PM2 and N3 with higher
profits than under PM1, but the regulators may discourage retailer switching away from PM1 since
W attains maximum under PM1 in this example. The manufacturer, who is also worse off under
PM1 than under N3, could initiate the switch to no-PM for large ρ. However, the regulators may
restrict manufacturer’s interventions since, from their point of view, a socially-optimal outcome is
realized. The negative performance of PM as a tool for enhancing the gain from increasing ρ, when
ρ increases from 0.2 to 0.65, is η(NA4,NA3,PM1) = −1.1. That is, the loss from PM is greater
than the gain from increased strategic behavior without PM. On the other hand, by Proposition 7,
the performance of PM1 as a mitigating tool can be positive and, as the following example shows,
PM1 may even lead to a notable gain.

Example 5. n = 4, p1 = 0.4, β = 0.65, ρH = 0.4, ρL = 0.3, c = 0.05, s = 0.

NA4-profit decreases in ρ by 8.7% from r∗,NA4|ρ=0.3 = 0.01258 to r∗,NA4|ρ=0.4 = 0.01149. If
PM becomes available and PM1 is realized at ρH = 0.4 (PM1 does not exist at ρL = 0.3),
profit at ρH almost doubles to r∗,PM1|ρ=0.4 = 0.02215, which in terms of PM performance is
η(NA4,NA4,PM1) = 9.776 — the increase in profit due to use of PM is almost ten times greater
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than the loss from increased strategic behavior under NA4. PM1 is beneficial for the aggregate
welfare as well: WPM1 = 0.346 > WNA4 = 0.277.

6. Conclusions

The fundamental effects associated with PM in the markets described by the proposed model
include a reduction in the total inventory and the corresponding increase in the clearance prices
or even a complete elimination of the clearance sales. Moreover, since strategic customer behavior
also tends to decrease equilibrium inventory, the PM can amplify this reduction in the presence
of strategic customers. As a result, by using PM, retailers can mitigate losses from strategic
customer behavior and even gain from an increase in its level. However, the gain is impossible for
a monopolistic retailer. When MSRP is relatively high, the retailers cannot take advantage of it
in a clearance PM-equilibrium (PM1) because of reimbursements. As a result, retailer profit in
PM1 can be less than without PM for low levels of strategic behavior, competition, and durability
as well as for high unit cost. In particular, there may exist a “PM-trap” for retailers — an input
area leading to the worst “salvaging” equilibrium (N4) without PM. Depending on expectations,
the PM equilibrium in this area can be either no-clearance PM2 (with a greater profit than in the
“salvaging” N4) or the clearance PM1 (with the profit less than in N4 as in Example 3).

These combined effects of PM and strategic behavior lead to the following implications for
retailers. (i) If the no-clearance PM-equilibrium exists, it is always efficient as a strategic-customer
mitigating tool and always better than the clearance PM-equilibrium and no-PM equilibria for any
given inputs. (ii) If both PM-equilibria exist for the same inputs, PM can hurt the retailers if
the clearance PM-equilibrium is realized. (iii) PM effect can be smaller than the discontinuous
profit gain due to the switch to a more profitable no-PM equilibrium (Example 4). This occurs if
“salvaging” no-PM equilibrium N4 exists and, for a higher level of strategic behavior, there exist
both the clearance PM-equilibrium and a no-PM equilibrium with a higher clearance price (N3).

There are several implications for a manufacturer that is able to influence the retailer PM policy.
(i) Since PM is never beneficial for a current-profit-maximizing manufacturer, it may use contract
terms to discourage retailers from this policy. (ii) A branded product manufacturer may support
the no-clearance PM-equilibrium. This support is possible only for a sufficiently low first-period
price when this equilibrium exists.

Since the aggregate welfare under PM can be either greater or less than without PM, the im-
plications for local policymakers may vary. (i) A combination of PM with MSRP may indicate
collusion among retailers or between retailers and a manufacturer (for a branded product). This
case does not require interventions when PM is welfare-increasing. Otherwise, the retailers’ PM
policy may be targeted by regulations. (ii) The absence of PM for a non-branded product may
indicate manufacturer interference. This case does not require any action when PM is welfare de-
creasing. Otherwise, the manufacturer activity may be conditioned in the corresponding way and
retailers may be encouraged to use PM.
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Symbol Definition
p1, p2 first- and second-period price
c, s unit cost and salvage value
I = {1, . . . , n} set of all retailers
yi, qi retailer i inventory and sales in the first period
mi price matching (PM) decision: mi = 1 — PM, mi = 0 — no-PM
Yk, Qk combined first-period inventories and sales of retailers with mi = k
Y,Q total first-period inventories and sales
v first-period customer valuation of the product
β factor of decrease of customer valuation by the second period
ᾱ, p̄2 customer expectations about product availability and price in the second period
ρ the level of customer strategic behavior
vmin
k minimum valuation level of customers who, given a choice, would purchase from

retailers with decision mi = k in the first period
y−i,m−i vectors of inventories and PM decisions of all retailers except i
ri profit of retailer i
BRi best response of retailer i

m̂, Ŷ symmetric equilibrium PM and inventory decision
(m∗, Y ∗, α∗, p∗2) rational expectations symmetric equilibrium (RESE)
r∗,Σ,W RESE-profit, total customer surplus, and aggregate welfare
CB1, CB2 c/β-bounds for RESE PM1 and PM2
P11, P12 p1-low bounds for PM1
P21, P22 p1-upper bounds for PM2
PN
1 p1-bound between RESE NA1 and NA3

PN
2 p1-bound between RESE NA2 and NA3

PN
4 p1-upper bound (necessary) for RESE NA4

η performance of PM as a tool for mitigating the loss from customer strategic behavior
a ∨ b, a ∧ b max{a, b} and min{a, b} respectively

Table 1. Main abbreviations and notation

Appendix A. Proofs of the main text statements

A.1. Proof of Theorem 1 (PM). The proof uses the following technical lemma.

Lemma 14. The roots (p1)1,2(x) of the following equation exist for x ≥ c/β :

p21 − (x+ c)p1 +
β

4
(x+ c/β)2 = 0. (5)

Moreover, (p1)2(x) is increasing in x if x > c/β, and (p1)1(x) ≤ 1
2(x + c/β) ≤ (p1)2(x) ≤ x with

strict inequalities if x > c/β and, for the first two inequalities, if β < 1.

Assume that expectations are defined when all retailers use PM as well as when any retailer i
deviates into no-PM, which, recall, we denote as ᾱ(0), p̄2(0).

The proof of Theorem 1 is based on the lemma below that provides the necessary and sufficient
conditions for PM response with positive inventory to consistent PM strategies of others. This
consideration excludes the following trivial case where the PM best response can only have zero
inventory: Y −i ≥ 1− c/β and Y −i ≥ 1−p1. Indeed, under these conditions the second-period sales
are always below cost and it is impossible for retailer i to have positive sales in the first period only.
The conditions in the form of p1-bounds with (p1)2 in parts (a.2) and (b) of Lemma 15 guarantee
that the maximum profit of a PM-retailer with the same product availability as other retailers (no
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second period sales or there are second-period sales) is not dominated by the profit of a deviator
who also uses PM but has a different inventory policy: with second period sales in part (a.2) and
without second-period sales in part (b). Condition (6) guarantees that the maximum profit of a
PM-retailer without second-period sales is not dominated by the profit of a deviator into no-PM
with sales in both periods.

Lemma 15. There exists BR with PM and positive inventory to consistent PM strategies of others
if and only if one of the following hold

(a) (no second-period sales) 1− Y −i
1 > p1 and either of

(a.1) c
β ≥ 1− Y −i

1 , or

(a.2) c
β < 1−Y −i

1 , vmin
0 6∈

(

c
β , 1−Y −i

1

)

and p1 ≤ (p1)2 (where (p1)2 = (p1)2(x)|x=1−Y −i
1

> c
β ),

or
(a.3) c

β < 1− Y −i
1 , vmin

0 ∈
(

c
β , 1− Y −i

1

)

and

p21 − (vmin
0 + c)p1 +

β

4

(

vmin
0 + c/β

)2
≤ 0. (6)

(b) (there are second-period sales) c
β < 1 − Y −i

1 , vmin
0 6∈

(

c
β , 1 − Y −i

1

)

, and p1 ≥ (p1)2 (where

(p1)2 >
c
β ).

The BR level of inventory yi1 is: in case (a) yi1 = 1− p1−Y −i
1 , and in case (b) yi1 =

1
2(1−Y −i

1 −
c/β); the optimal inventory of a deviator into no-PM in case (a.3) is

ỹi0 = 1− Y1 −
1

2

(

vmin
0 + c/β

)

. (7)

PM1. By part (b) of Lemma 15, the symmetric inventory of a retailer is 1
nY

∗
1 = 1

2(1− n−1
n Y ∗

1 −
c/β), resulting in Y ∗

1 = n
n+1(1 − c/β) and Y −i

1 = n−1
n+1(1 − c/β). Then condition c/β < 1 − Y −i

1 is
n−1
n+1(1−c/β) < 1−c/β, which always holds. Inequality vmin

0 ≤ c/β, as a part of vmin
0 6∈ (c/β, 1−Y −i

1 ),

is not relevant because vmin
0 = vmin

0 (ᾱ(0), p̄2(0)) ≤ c/β implies (see the proof of Lemma 15) that a
possible deviator into no-PM selects yi0 = y̆i0 (no second-period sales). Then, by rationality, ᾱ = 0
and vmin

0 = p1 ≤ c/β, which cannot hold together with p1 ≥ (p1)2 > c/β.

Hence, the existence of PM1 is determined only by vmin
0 ≥ 1 − Y −i

1 and p1 ≥ (p1)2. Inequality

vmin
0 ≥ 1−Y −i

1 means that a possible deviator into no-PM has sales only in the second period with

ri0 = [β(1 − Y1 − yi0) − c]yi0, the first-order condition
∂ri

0

∂yi
0

= −2βyi0 + β(1 − Y1) − c = 0, and the

resulting profit-maximizing inventory

ỹi0 =
1

2
(1− Y1 − c/β) = ỹi1, (8)

giving rational ᾱ = 1, p̄2 = p∗2 = β(1−Y ∗
1 ), and vmin

0 =
p1−ρβ(1−Y ∗

1
)

1−ρβ . Then inequality vmin
0 ≥ 1−Y −i

1

is

p1 − ρβ[1− n
n+1(1− c/β)]

1− ρβ
≥ 1− n− 1

n+ 1
(1− c/β) ⇔

p1 − ρβ +
nρβ

n+ 1
(1− c/β) ≥ 1− ρβ − n− 1

n+ 1
(1− c/β) + ρβ

n− 1

n+ 1
(1− c/β) ⇔

p1 ≥ 1− n− 1 + ρβ

n+ 1
(1− c/β) = P11. (9)

P11 is less than (p1)2(x)|x=1−n−1

n+1
(1−c/β) = P12 if after substitution of P11 for p1 and x = 1 −

n−1
n+1(1−c/β) into (5) the LHS of (5) becomes negative. This condition takes the form of a quadratic

inequality in c with the coefficient in front of c2 equal to (1−ρβ)2+(1−β)ρ[n−(1−ρβ)]
β(n+1)2

> 0 and the roots
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{β · CB1, β}, The first root is not greater than β (strictly less if β < 1). Therefore, P11 ≤ P12 if

c/β ≥ CB1. Then PM1 exists under condition p1 ≥ P12 = 1
2

[

x+ c+
√

(1− β)(x2 − c2/β)
]

(part

(1.2) of the Theorem).
Now we show that the substitution of P11 and x = 1− n−1

n+1(1− c/β) into (5) results in positive

LHS of (5) only if P11 > P12. This conclusion results from the following chain of inequalities that
is proved below:

P11 = 1− n− 1 + ρβ

n+ 1
(1− c/β) >

1

2
(x+ c/β) ≥ (p1)1(x),

where (p1)1(x) is the smaller root of (5) and x = 1− n−1
n+1(1− c/β). Indeed, the first inequality is

2− ρβ

n+ 1
+

n− 1 + ρβ

n+ 1

c

β
>

1

n+ 1
+

n

n+ 1

c

β
⇔ 1− ρβ

n+ 1
>

1− ρβ

n+ 1

c

β
,

which always holds, and the second inequality 1
2(x+c/β) ≥ (p1)1(x) holds by Lemma 14. Therefore,

whenever c/β < CB1, we have P11 > P12 yielding part (1.1) of the Theorem. Moreover, P11 = P12

when c/β = CB1.
PM2. By part (a) of Lemma 15, the symmetric inventory in this case is Y ∗

1 = 1 − p1 and

condition 1 − Y −i
1 > p1 holds for yi > 0. The condition of part (a.1), resulting in the existence of

PM2, takes the form c/β ≥ 1− n−1
n (1− p1) ⇔ p1 ≤ 1− n

n−1(1− c/β) = c/β − 1
n−1(1− c/β) < c/β.

The complementary case to this inequality is covered by parts (a.2) and (a.3) of Lemma 15.
When vmin

0 ≤ c/β, a possible deviator into no-PM has no sales in the second period, and vmin
0 =

p1 ≤ c/β implying p1 ≤ (p1)2 by part (a.2) of Lemma 15. Therefore, PM2 exists for any feasible
p1 ≤ c/β.

Consider vmin
0 ∈ (c/β, 1−Y −i

1 ) (part (a.3) of Lemma 15). This condition in combination with (6)

excludes vmin
0 = p1 because (6) becomes p21−(p1+c)p1+

β
4 (p1+c/β)2 ≤ 0 ⇔ β

4 (p1−c/β)2 ≤ 0, which

is impossible for vmin
0 = p1 > c/β. The case vmin

0 = 1 is also irrelevant here because it contradicts

vmin
0 < 1− Y −i

1 . Since the range vmin
0 ∈ (c/β, 1− Y −i

1 ) means that a possible deviator into no-PM
has sales in both periods (sales only in the first period yield profit that is not greater than under
PM2), i.e., ᾱ = 1, the only relevant case for vmin

0 is vmin
0 = p1−ρp2

1−ρβ , where p2 = β(1− Y1 − yi0), and,

by (7), yi0 = ỹi0 = 1− Y1 − 1
2(v

min
0 + c/β), yielding

vmin
0 =

p1 − ρβ 1
2(v

min
0 + c/β)

1− ρβ
⇔ (1− ρβ)vmin

0 = p1 − ρβvmin
0 /2− ρβc/2 ⇔

(1− ρβ/2)vmin
0 = p1 − ρc/2 ⇔ vmin

0 =
2p1 − ρc

2− ρβ
.

Then condition vmin
0 < 1− Y −i

1 becomes

2p1 − ρc

2− ρβ
< 1− n− 1

n
(1− p1) ⇔ 2p1 − ρc < (2− ρβ)

( 1

n
+

n− 1

n
p1

)

⇔
(

2− n− 1

n
(2− ρβ)p1

)

p1 <
2− ρβ

n
+ ρc ⇔ p1 <

2− ρβ + ρcn

2 + (n− 1)ρβ
, (10)

and condition vmin
0 > c/β is 2p1−ρc

2−ρβ > c/β ⇔ 2p1 − ρc > 2c/β − ρc ⇔ p1 > c/β. Under the

combination of this inequality with (10), by part (a.3) of Lemma 15, an equilibrium with Y ∗
1 = 1−p1

exists if and only if inequality (6) holds. With the rational “symmetric” vmin
0 this inequality becomes

p21 −
(2p1 − ρc

2− ρβ
+ c

)

p1 +
β

4

(2p1 − ρc

2− ρβ
+

c

β

)2
≤ 0. (11)

The coefficient in front of p21 is a2 = 1− 2
2−ρβ + β

(2−ρβ)2
= β(1−2ρ+ρ2β)

(2−ρβ)2
, which is positive if and only

if ρ < (1−√
1− β/β (the larger root of 1−2ρ+ρ2β = 0 is (1+

√
1− β)/β > 1 – irrelevant here). If
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a2 = 0, (which means that 1−2ρ+ρ2β = 0) the inequality above becomes p1 ≥ −a0/a1, where a0 =
β
4

(

c/β− ρc
2−ρβ

)2
and a1 = −(2−2ρβ−2ρ+ρ2β+ρ2β2)/(2−ρβ)2 = −[(1−ρβ)2+1−2ρ+ρ2β]/(2−ρβ)2

= −(1− ρβ)2/(2− ρβ)2, yielding p1 ≥ c/β, which always holds in this case.
If a2 > 0, the reduced form of (11), after collecting the terms with p1 and dividing by a2, is

p21 −
c

β

(

1 +
(1− ρβ)2

1− 2ρ+ ρ2β

)

p1 +
( c

β

)2( (1− ρβ)2

1− 2ρ+ ρ2β

)

≤ 0 (12)

with the roots of the corresponding equation (p1)1,2 = { c
β ,

c
β

(1−ρβ)2

1−2ρ+ρ2β
}, which can be seen by

observing that −[(p1)1+(p1)2] equals the coefficient in front of p1 and (p1)1(p1)2 – the free coefficient
of (12). The roots are distinct if and only if β < 1. Both (11) and (12) hold if p1 is between the
roots:

c

β
≤ p1 ≤

c

β

(1− ρβ)2

1− 2ρ+ βρ2
= P21. (13)

In the case a2 < 0 (implying 1 − 2ρ + ρ2β < 0), inequality (12) is inverted and holds if p1 does
not exceed the smaller root, which is irrelevant since P21 < 0 in this case, or if p1 is not less than
the larger root: p1 ≥ c/β, which always holds in this case.

Hence, the case vmin
0 ∈ (c/β, 1 − Y −i

1 ) yields two upper bounds on p1 that guarantee PM2
existence, namely, conditions (10) and (13). The bound on c/β below shows when P21 is less than
the bound from (10).

P21 =
c

β

(1− ρβ)2

1− 2ρ+ βρ2
<

2− ρβ + nρβ c
β

2− ρβ + nρβ
⇔ c

β

[

(1− ρβ)2(2− ρβ + nρβ)

1− 2ρ+ ρ2β
− nρβ

]

< 2− ρβ ⇔

c

β

(1− ρβ)2(2− ρβ) + nρβ[(1− ρβ)2 − 1 + 2ρ− ρ2β]

(2− ρβ)(1− 2ρ+ ρ2β)
< 1 ⇔ c

β

(1− ρβ)2 + nρ2β(1− β)

1− 2ρ+ ρ2β
< 1 ⇔ c

β
< CB2.

(14)
Consider vmin

0 ≥ 1 − Y −i
1 (part (a.2) of Lemma 15). Since a possible deviator to no-PM has

no first period sales, the optimal inventory, by (8), is ỹi0 = 1
2(1 − Y −i

1 − c/β), and inequality

vmin
0 ≥ 1− Y −i

1 is

p1 − ρβ[1− Y −i
1 − 1

2(1− Y −i
1 − c/β)]

1− ρβ
≥ 1− Y −i

1 ⇔

p1 − ρβ(1− Y −i
1 ) + ρβ(1− Y −i

1 − c/β)/2 ≥ (1− Y −i
1 )(1− ρβ) ⇔ p1 + ρβ(1− Y −i

1 )/2− ρc/2 ≥ 1− Y −i
1 ,

which with 1− Y −i
1 = 1

n + n−1
n p1 is

p1 +
ρβ

2

( 1

n
+

n− 1

n
p1

)

− ρc

2
≥ 1

n
+

n− 1

n
p1 ⇔

( 1

n
+

ρβ(n− 1)

2n

)

p1 ≥
ρc

2
+

1

n

(

1− ρβ

2

)

yielding [2 + ρβ(n− 1)]p1 ≥ ρcn+ 2− ρβ, which gives inequality complementary to (10). vmin
0 = 1

is included in this condition since vmin
0 = 1 ≥ 1 − Y −i

1 always holds; vmin
0 = p1 is irrelevant here

because vmin
0 = p1 ≥ 1− Y −i

1 contradicts the necessary condition of part (a) Lemma 15.

Hence, when vmin
0 ≥ 1− Y −i

1 = x > c/β, the existence of PM2 is guaranteed by condition

2− ρβ + ρcn

2 + (n− 1)ρβ
≤ p1 ≤ (p1)2(x)|x= 1

n
+n−1

n
p1
. (15)

Similar to above, the resulting condition for c/β below is equivalent to the non-emptiness of this
range. Consider inequality

p1 ≤ (p1)2(x)|x= 1

n
+n−1

n
p1
, (16)
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which, by (5), is equivalent to 2p1 − (x + c) ≤
√

(x+ c)2 − β(x+ c/β)2. The LHS is 2p1 −
(

1
n +

n−1
n p1 + c

)

= n+1
n p1 − 1+nc

n , which is non-negative for p1 ≥ (1 + nc)/(n+ 1), implying that (16) is

equivalent to
[

p21 − (x+ c)p1 + β(x+ c/β)2/4
]
∣

∣

x= 1

n
+n−1

n
p1

≤ 0 (17)

with the coefficient in front of p21 equal to 1 − n−1
n + β

(

n−1
n

)2
/4 > 0. Moreover, for p1 = (1 +

nc)/(n + 1), conditions (16) and (17) hold trivially. Therefore, p1 = (1 + nc)/(n + 1) is between
the roots of (5) with x = 1

n + n−1
n p1.

Observe also that the LHS of range (15) is

2− ρβ + ρcn

2 + (n− 1)ρβ
=

2− ρβ + nρβ − nρβ + nρβc/β

2− ρβ + nρβ
= 1− nρβ(1− c/β)

2− ρβ + nρβ
= 1− n(1− c/β)

2/ρβ − 1 + n
,

which is decreasing in both ρ and β implying that 2−ρβ+ρcn
2+(n−1)ρβ > 1+nc

n+1 for any feasible ρ and β.

Therefore, 2−ρβ+ρcn
2+(n−1)ρβ is greater than the smaller root of (5) with x = 1

n + n−1
n p1. Hence, the

condition of non-emptiness of range (15) follows from inequality (17) with p1 = 2−ρβ+ρcn
2+(n−1)ρβ . The

resulting condition takes the form of a quadratic inequality in c

( 2− ρβ + ρcn

2 + (n− 1)ρβ

)2
−
( 1

n
+
n− 1

n

2− ρβ + ρcn

2 + (n− 1)ρβ
+c

) 2− ρβ + ρcn

2 + (n− 1)ρβ
+
β

4

( 1

n
+
n− 1

n

2− ρβ + ρcn

2 + (n− 1)ρβ
+
c

β

)2
≤ 0

with the coefficient in front of c2 equal to ρ2βn(1−β)+(1−ρβ)2

β[2+(n−1)ρβ]2
> 0 and the roots {β · CB2, β} , where

CB2 = 1−2ρ+ρ2β
(1−ρβ)2+nρ2β(1−β)

≤ 1 implying that range (15) is not empty if and only if c is between

these roots. The denominator of CB2 is always positive. Therefore, if 1 − 2ρ + ρ2β ≤ 0, we have
CB2 ≤ 0 and range (15) is not empty for any feasible c : 0 < c < β.

If 1− 2ρ+ ρ2β > 0, range (15) is not empty for any c
β such that CB2 ≤ c

β ≤ 1. The LHS of this

condition is complementary to (14), which means that when it does not hold, range (15) is empty
and PM2 exists if p1 ≤ P21 (part (2.1) of the Theorem); and when it holds, PM2 exists if (16) is
satisfied.

It remains to specify condition (16) by expressing the larger root of (5) with x = 1
n + n−1

n p1.
After the substitution and collection of terms, (5) becomes

[

1

n
+

β

4

(

n− 1

n

)2
]

p21 +

[

1

2n

(

β
n− 1

n
+ c(n− 1)

)

− 1

n
− c

]

p1 +
β

4

(

1

n
+

c

β

)2

= 0,

which, multiplied by 4n2, is
[

4n+ β(n− 1)2
]

p21+2 [β(n− 1)− cn(n+ 1)− 2n] p1+β (1 + nc/β)2 =
0. The larger root is

2[cn(n+ 1) + 2n− β(n− 1)] +
√
D

2[4n+ β(n− 1)2]
,

where D = 4
{

[β(n− 1)− cn(n+ 1)− 2n]2 −
[

4n+ β(n− 1)2
]

β (1 + nc/β)2
}

, where the squared

bracket [·]2 is β2(n − 1)2 + c2n2(n + 1)2 + 4n2 − 2β(n − 1)cn(n + 1) − 4β(n − 1)n + 4cn2(n + 1),
and the second term in the bracket {·} is

−
[

4n+ β(n− 1)2
]

β
(

1 + 2nc/β + n2c2/β2
)

= −
[

4nβ + 8n2c+ 4n3c2/β + β2(n− 1)2 + 2βnc(n− 1)2 + (n− 1)2n2c2
]

.
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After simplifications,

D = 4
{

4n3c2 + 4n2 − 2βcn(n2 − 1 + n2 − 2n+ 1)− 4βn2 + 4cn2(n+ 1)− 8n2c− 4n3c2/β
}

= (4n)2
{

nc2 + 1− βc(n− 1)− β + c(n+ 1)− 2c− nc2/β
}

= (4n)2 {nc[c− β + 1− c/β] + 1− β + βc− c} = (4n)2(1− β) {nc (1− c/β) + 1− c}
and the expression for the larger root is

P22 =

n(n+ 1)c+ 2n− β(n− 1) + 2n

√

(1− β)
[

nc
(

1− c/β
)

+ 1− c
]

4n+ β(n− 1)2
. (18)

The fact P11, P12, P22 → 1 as c
β → 1 can be shown by direct substitution of c

β = 1 into the formulas

for P11, P12, and P22.

A.2. Proof of Corollary 2 (profit PM2 exceeds PM1). Part (1). When c
β < CB1, equilibria

PM1 or PM2 exist (Theorem 1) if, respectively, p1 ≥ P11 or p1 ≤ P21. Therefore, PM-equilibria do
not exist for P21 < p1 < P11 if P11 > P21. By the definition of P11 and P21, inequality P11 ≥ P21,
multiplied by n+ 1 is

n+ 1− n+ 1− ρβ + (n− 1 + ρβ)
c

β
≥ c

β

(1− ρβ)2(n+ 1)

1− 2ρ+ βρ2
⇔

2− ρβ ≥ c

β

(1− ρβ)2(n+ 1)− (n− 1 + ρβ)(1− 2ρ+ βρ2)

1− 2ρ+ βρ2
.

Since 1 − 2ρ + βρ2 = (1 − ρβ)2 − ρ(1 − β)(2 − ρβ), the numerator of the second fraction can be
written as (1−ρβ)2(2−ρβ)+(n−1+ρβ)ρ(1−β)(2−ρβ). Then, after dividing both sides by 2−ρβ

and expressing c
β , the inequality becomes c

β ≤ 1−2ρ+ρ2β
(1−ρβ)2+(1−β)ρ[n−(1−ρβ)]

= CB1. Hence, P11 ≥ P21 is

equivalent to c
β ≤ CB1. By the proof of part PM1 of Theorem 1, we also know that P11 = P12 if

c
β = CB1.

Part (2). By Theorem 1, both P12 and P22 are greater than c
β if n < ∞, and, by Lemma 15,

both are the larger roots of (5) at different (for n > 1) x, namely x12 = 1 − n−1
n+1 (1− c/β) and

x22 = 1
n + n−1

n p1. For n = 1, x12 = x22 = 1, and the expression for P12 = P22 = P2 results from
direct substitution. For n > 1, by Lemma 14, x12 > c

β and x22 > c
β , and inequality P12 < P22

follows from x12 < x22 since the larger root of (5) increases in x. Inequality x12 < x22 is

2

n+ 1
+

n− 1

n+ 1

c

β
<

1

n
+

n− 1

n
p1 ⇔ p1 >

n

n− 1

[

2

n+ 1
− 1

n
+

n− 1

n+ 1

c

β

]

=
β + nc

(n+ 1)β
.

This inequality holds for any p1, corresponding to PM1 (including the overlap with PM2) if β+nc
(n+1)β <

P11, i.e.,
β+nc
(n+1)β < 1 − n−1+ρβ

n+1

(

1 − c
β

)

⇔ 1 + n c
β < n + 1 − n + 1 − ρβ + (n − 1 + ρβ) cβ , which is

equivalent to (1− ρβ)c/β < 1− ρβ and always true.
Assume, for n ≥ 1, that P12 ≤ p1 ≤ P22, which determines the overlap of PM1 and PM2 only if

c
β ≥ CB2, i.e., CB2 < 1 must hold (β < 1, ρ > 0). Inequality r∗,PM1 ≤ r∗,PM2 is equivalent to

p21 − (1 + c)p1 + c+
n(β − c)2

(n+ 1)2β
≤ 0. (19)

It can be shown that the LHS of (19) equals the LHS of (5) at x = 1 for n = 1 and strictly less for
n > 1. This property implies, first, by Lemma 14, that for any β < 1 there are two distinct roots of
the equation corresponding to (19), and, second, that, for n > 1, the larger root is greater, and the
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smaller root is less than the corresponding roots of (5) at x = 1 (for n = 1 the equations coincide).
Indeed, the free coefficient in the LHS of (19) can be written as

c+
n(β − c)2

(n+ 1)2β
− β

4

(

1 +
c

β

)2
+

β

4

(

1 +
c

β

)2
=

β

4

(

1 +
c

β

)2
+

1

4β

[

4n(β − c)2

(n+ 1)2
− (β + c)2 + 4βc

]

,

where the bracket [·] = 4n(β−c)2

(n+1)2
− (β − c)2 equals zero for n = 1 and decreases in n.

It can be shown also that range [P12, P22] is strictly (for n > 1) between the roots of the
equation, corresponding to (19). First, by Lemma 14, P22 is not greater than the greater root
of (5) at x = 1 since c

β < x22 ≤ 1. For n = 1, P22 equals this root and equals P12, implying

that (19) holds as equality yielding r∗,PM1 = r∗,PM2 if p1 = P12 = P22 = P2. Second, for n > 1,
P12 is always greater than the smaller root of the equation, corresponding to (19), which follows
from the chain of inequalities: first, by Lemma 14, P12 = (p1)2(x)|x=x12

≥ 1
2(x+ c/β)

∣

∣

x=x12

and, second, 1
2(x+ c/β)

∣

∣

x=x12
is greater than the smaller root of the equation, corresponding to

(19). The last inequality holds if the LHS of (19) becomes negative after the substitution of
1
2(x+ c/β)

∣

∣

x=x12
= 1

n+1 + n
n+1

c
β for p1. Indeed, this substitution yields

(

1

n+ 1
+

n

n+ 1

c

β

)2

− (1 + c)

(

1

n+ 1
+

n

n+ 1

c

β

)

+ c+
n(β − c)2

(n+ 1)2β
,

which, multiplied by (n+1)2β2 becomes (β + nc)2−(1+c)(n+1)
(

β2 + ncβ
)

+c(n+1)2β2+nβ(β−c)2

= n{n[c2− (1+ c)cβ+ cβ2]+ cβ−β2+β3− cβ2}, where {·} is n[c2(1−β)− cβ(1−β)]+β(c−β)−
β2(c− β) = nc(1− β)(c− β) + β(c− β)(1− β) < 0 for any n > 1. Hence, p1 ∈ [P12, P22] results in
satisfaction of (19) as a strict inequality and r∗,PM1 < r∗,PM2.

Part (3). This part is relevant only for n > 1, β < 1, and 0 < ρ < (1 − √
1− β)/β leading

to 0 < CB1 < CB2. By part (1), P12 = P21 if c
β = CB1 > 0. Then P12 < P21 for c

β > CB1 if
∂P12

∂(c/β) <
∂P21

∂(c/β) for all
c
β > CB1. Denoting x = 1− n−1

n+1 (1− c/β) , the derivatives ∂P12

∂(c/β) and
∂2P12

[∂(c/β)]2

are

∂P12

∂ (c/β)
=

1

2

{

n− 1

n+ 1
+ β + (1− β)

(

x
n− 1

n+ 1
− β

c

β

)

/
√

(1− β) [x2 − c2/β]

}

,

∂2P12

[∂ (c/β)]2
=

1

2

{

(

n− 1

n+ 1

)2

− β −
(

x
n− 1

n+ 1
− c

)2

/
[

x2 − c2/β
]

}

√

(1− β)/ [x2 − c2/β].

Since P12 is a branch of a second-order curve, and such a branch is either convex or concave
in its entire domain, the concavity of P12(c/β) can be shown at c/β = 0, where x|c/β=0 = 2

n+1 .

Namely, ∂2P12

[∂(c/β)]2

∣

∣

∣

c/β=0
= −β

4 (n+ 1)
√
1− β ≤ 0. Since P12(c/β) is concave, P12|c/β=0 =

1+
√
1−β

n+1 >

P21|c/β=0 = 0, and P12 = P21 at c/β = CB1, we have ∂P12

∂(c/β) < ∂P21

∂(c/β) at c/β = CB1. The last

inequality combined with the concavity of P12(c/β) implies that ∂P12

∂(c/β) <
∂P21

∂(c/β) for all c/β > CB1.

Inequality r∗,PM1 < r∗,PM2 for P12 ≤ p1 ≤ P21 follows from part (2) since P21 < P22 for
c/β < CB2.

Part (4). c/β ≥ CB1 is 1− 2ρ+ ρ2β ≤ [1− 2ρβ + ρ(1− β)(n− 1) + ρ2β]c/β or ρ2(β − c)− ρb+

1− c/β ≤ 0, where b , 2+ [n(1−β)− 1]c/β− c. The discriminant of the corresponding equation is
D = b2−4(β−c)2/β, which is non-negative since ∂D

∂β = 2b(−nc+c)/β2−4[2(β−c)−(β−c)2]/β2 < 0

and D|β=1 = 0. The larger root is irrelevant since b
2(β−c)

∣

∣

∣

n=1
≥ 1 and b increases in n. Therefore,

c/β ≥ CB1 ⇔ ρ ≥ ρ̄, where ρ̄ , 1
2(β−c)

[

b−
√

b2 − 4(β − c)2/β
]

is the smaller root, which goes to

zero with n → ∞.
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Part (5). The monotonicity of P11 and P21 in c, ρ, β, and n follows directly from the definitions
of these bounds given in Theorem 1. In particular,

∂P21

∂ρ
=

c

β(1− 2ρ+ βρ2)2
[

−2β(1− ρβ)(1− 2ρ+ βρ2)− (1− ρβ)2(−2 + 2ρβ)
]

,

where [·] = 2(1 − ρβ){(1 − ρβ)2 − (β − 2ρβ + ρ2β2)}, where {·} = 1 − β, leading to ∂P21

∂ρ =
c
β
2(1−ρβ)(1−β)
(1−2ρ+βρ2)2

≥ 0.

Both P12 and P22 are decreasing in n since they are the larger roots of (5), which, by Lemma 14,
are increasing in x for any x > c

β , and both x12 = 1 − n−1
n+1 (1− c/β) and x22 = 1

n + n−1
n p1 are

greater than c/β and decreasing in n.

∂P12

∂c
=

1

2

[

∂x

∂c
+ 1 +

1

2

√

1− β · 2
(

x
∂x

∂c
− c

β

)

/
√

x2 − c2/β

]

,

where ∂x
∂c = n−1

β(n+1) is increasing in n, and the last fraction in [·] is also increasing in n either for

any c and n ≤ 3 or for n > 3 and c ≥ c0 = 1
2 − 1

n−1 . This monotonicity follows from the expression

for x∂x
∂c = (n−1)[2+c(n−1)]

β(n+1)2
and the derivative

∂

∂n

(

x
∂x

∂c

)

=
2(n+ 1)

β(n+ 1)4
([1 + c(n− 1)] (n+ 1)− (n− 1)[2 + c(n− 1)])

=
2

β(n+ 1)3
(2− (n− 1) + 2c(n− 1)) =

2[2 + (n− 1)(2c− 1)]

β(n+ 1)3
,

where the last bracket [·] ≥ 0 under the above conditions on c and n. Then, denoting d(x) ,

x2 − c2/β,

∂

∂n

(

x
∂x

∂c
/
√

d(x)

)

=
1

d(x)

{

2[2 + (n− 1)(2c− 1)]

β(n+ 1)3

√

d(x)− x
∂x

∂n

(n− 1)[2 + c(n− 1)]

β(n+ 1)2
/
√

d(x)

}

,

where ∂x
∂n = −2(1−c/β)

(n+1)2
< 0. Consider n > 3 and c < c0. Then {·} , multiplied by β(n+1)3

2

√

d(x) > 0,

becomes [2+(n−1)(2c−1)]d(x)+[2+c(n−1)]n−1
n+1 (1− c/β)x, where n−1

n+1 (1− c/β) = 1−x. Collecting

the terms with x, we have x {x [(n− 1)(2c− 1)− c(n− 1)] + 2 + c(n− 1)}−c2[2+(n−1)(2c−1)]/β,
where the last term is positive for n > 3 and c < c0, and the bracket {·} in the first term is

{·} = (n− 1) [x(c− 1) + c] + 2 is minimized at c = 0. Namely, {·} |c=0 = (n− 1)
[

−1 + n−1
n+1

]

+ 2 =

2
[

1− n−1
n+1

]

> 0. Hence, since ∂P12

∂c is increasing in n, it remains to show that it is positive at n = 1.

Indeed, ∂P12

∂c |n=1 = 1
2

(

1− c
β

√

1−β
1−c2/β

)

, and since c2

β < β, leading to
√

1−β
1−c2/β

< 1, we obtain

∂P12

∂c |n=1 >
1
2 (1− c/β) > 0.

Using (18) for P22, we have

∂P22

∂c
=

1

4n+ β(n− 1)2

[

n(n+ 1) +
n(1− β) (n (1− 2c/β)− 1)

√

(1− β) (nc (1− c/β) + 1− c)

]

,

where [·] = n(n+ 1) + n (n (1− 2c/β)− 1)
√

1−β
nc(1−c/β)+1−c and

√

1−β
nc(1−c/β)+1−c < 1 since the LHS

is decreasing in n and less than one for n = 1. Then ∂P22

∂c > 0 if n(n+1)+n (n (1− 2c/β)− 1) > 0.

The last inequality is equivalent to n2 (1 + 1− 2c/β) > 0, which always holds.
Consider β < 1 since CB1|β=1 = CB2|β=1 = 1 and both P12 and P22 are irrelevant — PM-

equilibria are determined either by condition (1.1) or (2.1) of Theorem 1. Since P12 and P22 are
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the larger roots of (5), ∂P12

∂β and ∂P22

∂β can be found from the differentiation of (5):

2p1
∂p1
∂β

− (x+ c)
∂p1
∂β

− ∂x

∂β
p1 +

1

4

[

(x+ c/β)2 + 2β (x+ c/β)
(

−c/β2
)

]

= 0,

which can be written as ∂p1
∂β [2p1− (x+c)] = ∂x

∂βp1− 1
4

(

x2 − c2/β2
)

. The RHS is negative since both

x12 and x22 are greater than c
β ,

∂x22

∂β = 0, and ∂x12

∂β = −n−1
n+1c/β

2 ≤ 0. The bracket [·] in the LHS is

positive since, by Lemma 14, 2p1 > x+ c
β > x+ c for β < 1. Therefore, ∂P22

∂β = −1
4
(x2

22
−c2/β2)

2P22−(x22+c) < 0

and ∂P12

∂β = −
[

n−1
n+1cP12/β

2 + 1
4

(

x212 − c2/β2
)

]

/ [2P12 − (x12 + c)] < 0.

A.3. Proof of Proposition 4 (p1-bounds of PM and NA). Part (1) follows from maxn P
N
2 =

c
β ≤ min{P21, P22}. The inequality is shown in Theorem 1.

Part (2). PN
1 ≥ P11 is 1 − n

n+1ρ(β − c) ≥ 1 − n−1+ρβ
n+1 (1 − c/β) ⇔ nρβ ≤ n − 1 + ρβ ⇔

1 − ρβ ≤ n(1 − ρβ), which is strict for n > 1. When n = 1, we have PN
1 ≡ P11, and, for

c
β > CB1, the p1−boundary of PM1 dominates PN

1 since P12 > P11. For n > 1, PN
1 ≥ P12 for

any ρ ∈ [0, 1) if infρ P
N
1 ≥ P12, which is 1 − n

n+1(β − c) ≥ 1
2

[

x+ c+
√

(1− β)(x2 − c2/β)
]

.

Substitution for x = 1 − n−1
n+1 (1− c/β) leads to

√· − 1 + c − (β−c)[n(1−2β)−1]
β(n+1) ≤ 0, where

√·
and the last term are decreasing in n. Indeed, considering n as a continuous variable, the de-
rivative of the last term w.r.t. n is −1

β(n+1)2
{(β − c)(1− 2β)β(n+ 1)− β(β − c)[n(1− 2β)− 1]} =

−(β−c)
(n+1)2

{(1− 2β)(n+ 1)− n(1− 2β) + 1} = −2(β−c)
(n+1)2

(1−β) ≤ 0. Therefore, inequality infρ P
N
1 ≥ P12

holds if it holds for n = 2, which is
√

(1− β)(x2 − c2/β) ≤ 1− c+ (β − c)(1− 4β)/(3β), (20)

where x|n=2 = (2β+c)/(3β) and
(

x2 − c2/β
)

|n=2 = [(2β+c)2−9βc2]/(3β)2. Then (20), multiplied

by 3β, can be written as
√

(1− β) [·] ≤ 4β + βc − 4β2 − c or
√

(1− β) [·] ≤ (1 − β)(4β − c),
which holds as equality for β = 1. Consider β < 1. Then (20), squared, is (2β + c)2 − 9βc2 ≤
(1 − β)(4β − c)2, which, divided by β, can be written as (4β − c)2 − 12β + 12c − 9c2 ≤ 0 or
12β2 − 12c2 + 4(β − c)2 − 12(β − c) ≤ 0 ⇔ (β − c)(β + c− 3) + (β − c)2 ⇔ 2β − 3 ≤ 0, which holds
strictly.

A.4. Proof of Proposition 6 (NA4-profit less than NA3). Part (1). NA4 exists only if p∗2 = s

or Y ∗ > 1− s
β , which can be written as c− s < n−1

n
β(p1−s)
β−s (1− v∗). The RHS is maximal at ρ = 0

(v∗ = p1 is minimal) and p1 =
1+s
2 yielding c−s < n−1

n
β(1−s)2

4(β−s) . NA4 can also exist (profit is positive)

only if there are first-period sales, i.e., v∗,NA4 < 1 ⇔ p1 − ρs < 1− ρβ ⇔ p1 < 1− ρ(β − s) = PN
4 ,

which is less than PN
1 = 1 − n

n+1ρ(β − c). These bounds can be written as ρ < 1−p1
β−s = ρN4 and

ρ < n+1
n

1−p1
β−c = ρN.

1 respectively.

Part (2) follows from the observations: (a) the second-period sales under NA4 are always at

loss with p∗,NA4
2 = s < p∗,NA3

2 while Y ∗,NA4 > Y ∗,NA3; and (b) since, by (2) and rationality of
expectations in equilibrium, v∗ is nonincreasing in p∗2, we have v∗,NA4 ≥ v∗,NA3 implying that the
first-period profit is less under NA4. A similar argument leads to r∗,NA4 < 1

n(p1−c)(1−p1) for any
inputs where NA4 exists. The RHS of this inequality is the first-period profit in NA4 for ρ = 0,
coinciding with the expression for profit under NA2 or PM2. Since v∗,NA4 is increasing in ρ, the
first-period profit in NA4 is decreasing ρ. Consequently, because the second-period sales are at
loss, the equilibrium profit is strictly less than the RHS.
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A.5. Proposition 16 (RESE N). The conditions of N-equilibria existence require the com-

parison of retailer profit in various options, which leads to quadratic inequalities in z , 1 −
n−1
n Y ∗

0 − c/β. When z is non-negative, one can interpret it as the level of inventory of a re-
tailer deviating from a symmetric equilibrium that makes a clearance price equal to the unit
cost. Thus, if z ≤ 0, the second-period price, by (3), cannot be above cost regardless of a
one-retailer deviation from a symmetric strategy profile. Several thresholds on z result from

quadratic inequalities and, below, we denote z1 , 2
β

[

p1 − c−
√

(p1 − c)p1(1− β)
]

, and z̃1 ,
{

z1, if n = 1, or ρ = 0, or β = 1, or p1 = c/β,
(p1−c)(2−ρβ)

β(1−ρβ)

[

1−
√

1− 4(βp1−c)(1−ρβ)
(p1−c)(2−ρβ)2

]

otherwise,

as the smaller roots of the corresponding equations, and ẑ2 , ẑ2(β, c, n, s) — as the larger one.

Proposition 16. If PM is available, N-equilibria with the following structure exist if and only
if the respective conditions apply. The set of necessary and sufficient conditions is given in each
case by the combination of the conditions in the corresponding NA-equilibrium and the additional
conditions listed below.

N1: requires no additional conditions for n > 1 and, for n = 1, the condition p1 ≥ P2;
α∗(1) = 1.

N2: requires no additional conditions and α∗(1) = 0.
N3: under the following additional conditions, where Y ∗ is the larger root of the quadratic

equation

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− (p1 − β)ρβ(n− 1)

β(n+ 1− ρβ)
Y − (p1 − β)(1− p1)(n− 1)

β(n+ 1− ρβ)
= 0. (21)

and r∗,N3 is defined by part NA3 of Theorem 3:
(3.1) inequality r∗,N3 ≥ r̆i1 = (p1−c)

(

1− p1 − n−1
n Y ∗) holds and either p1 ≤ c

β and n−1
n Y ∗ ≤

1− p1, or p1 >
c
β and n−1

n Y ∗ ≤ 1− c
β − z1 with the corresponding rational expectations

α∗(1) = 0; or
(3.2) either p1 ≤ c

β and n−1
n Y ∗ > 1− p1, or p1 > c

β and either n−1
n Y ∗ ≥ 1− c

β , or 1− c
β −

min
{

z̃1, 2
√

r∗,N3/β
}

≤ n−1
n Y ∗ < 1 − c

β with the corresponding rational expectations

α∗(1) = 1.

N4: under the following additional conditions, where Y ∗ = n−1
n

p1−s
c−s

(

1− p1−ρs
1−ρβ

)

:

(4.1) inequality (1− p1)
[

1 + c−s
(n−1)2(p1−c)

]−1
≤ n−1

n Y ∗ (r∗,N4 ≥ r̆i1) holds and either p1 ≤ c
β

and n−1
n Y ∗ ≤ 1−p1, or p1 >

c
β and n−1

n Y ∗ ≤ 1− c
β −z1 with the corresponding rational

expectations α∗(1) = 0; or
(4.2) either p1 ≤ c

β and n−1
n Y ∗ > 1− p1, or p1 > c

β and either n−1
n Y ∗ ≥ 1− c

β , or 1− c
β −

min{ẑ2, z̃1} ≤ n−1
n Y ∗ < 1− c

β with the corresponding rational expectations α∗(1) = 1.

Equation (21) is derived in the proof of Theorem 3. This proof can be found in Bazhanov et al.
(2015).

Proof of Proposition 16 is based on the following lemma, which uses the notations z0 , 2 (p1 − c/β) .

Lemma 17. Consider retailer i using PM and a profile of competitor strategies not using PM
with combined inventory Y0 ≥ 0. There exist optimal inventory of retailer i and the corresponding
rational expectations of customers in one of the forms given below. No other forms can exist.

(a) y̆i1 = 1 − p1 − Y0 = z − z0
2 (no second-period sales) with positive profit r̆i1 = y̆i1(p1 − c) and

rational expectations ᾱ = 0 if and only if either of the two conditions holds: (a.1) p1 ≤ c
β

and z > z0
2 (Y0 < 1− p1 ⇒ p1 < 1), or (a.2) p1 >

c
β and z ≥ z1 (r̆i1|ᾱ=0 ≥ r̃i1);
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(b) ỹi1 = z
2 (with second-period sales) with positive profit r̃i1 = β(ỹi1)

2 and rational expectations

ᾱ = 1, p̄2 = p2 = β(1−Y0− ỹi1) if and only if p1 >
c
β , z > 0 and either of the two conditions

holds: (b.1) p1 = 1, or (b.2) p1 < 1, and z ≤ z̃1 (r̆i1|ᾱ=1 ≤ r̃i1) for Y0 > 0 or z ≤ z1 for
Y0 = 0;

(c) the optimal inventory and profit are zero if and only if z ≤ 0∧ z0
2 . Rational expectations are

ᾱ = 0 if z = z0
2 and ᾱ = 1, p̄2 = β(1− Y0) if z < z0

2 .

Moreover, under the conditions of part (a.2), z0
2 < z1 ≤ z0; part (b), c < p2 < βp1; part (b.2),

z̃1 ≤ z0, p1 > c
β + z

2 , and vmin
0 is not decreasing in ρ; under the conditions of both (a.2) and (b.2),

z1 ≤ z̃1 with strict inequality if ᾱ = 1, β < 1, p1 > c
β , and ρ > 0; the condition of part (c) never

holds for Y0 = 0 (a monopoly). The profit value r̃i1 and the corresponding ỹi1 do not depend on the
specific values of rational expectations and are identical in parts (a) and (b). The general expression
for the optimal inventory of a retailer who limits the sales to the first period is y̆i1 = 1− vmin

0 − Y0.

The three parts of lemma correspond to the following mutually exclusive cases. Parts (a) and
(b) describe positive optimal inventory decisions corresponding to rational customer expectations
of sales, respectively, only in the first period and in both periods. Part (c) describes a trivial
(zero) optimal inventory decision and corresponding rational expectations. Necessary and sufficient
conditions of parts (a) and (b) allow an overlap of input parameter regions when p1 > c/β and
z1 ≤ z ≤ z̃1. In this case, a potential form of retailer i decision, (a) or (b), depends on customer
expectations, i.e., both ᾱ = 0 and ᾱ = 1 can be rational.

When PM is possible, a RESE N with the corresponding expectations for a one-retailer deviations
into PM, α∗(1), exists if and only if either of the two conditions hold: (i) both possible deviations
of a retailer i into PM are trivial (part (c) of the lemma) or (ii) at least one of the deviations is not
trivial (parts (a) or (b) of the lemma) and optimal deviator’s profit does not exceed the equilibrium
profit under the corresponding RESE NA. Since Y0 =

n−1
n Y ∗ and z = 1− n−1

n Y ∗ − c/β, case (i) is

characterized by n−1
n Y ∗ ≥ (1−p1)∨(1−c/β). Rational expectations under deviation are α∗(1) = 0,

when n−1
n Y ∗ ≤ 1− p1, and α∗(1) = 1, otherwise.

N1. By part NA1 of Theorem 3, r∗,N1 = (β−c)2

(n+1)2β
and Y ∗ = n

n+1 (1− c/β) , yielding Y0 =
n−1
n+1 (1− c/β) . Since p1 > c/β, this situation is covered by case (ii). By Lemma 17, ỹi1 =
1
2 (1− Y0 − c/β) = z

2 = 1
n+1 (1− c/β) , which is strictly positive (i.e., z > 0). The resulting

total inventory would be the same as in NA1, therefore, the rational expectations under devia-
tion into ỹi1 would lead to vmin

0 = 1 for n > 1. Under this scenario y̆i1 = 1 − vmin
0 − Y0 ≤ 0 is

infeasible. Since the optimal deviator’s profit r̃i1 = β(ỹi1)
2 = (β−c)2

(n+1)2β
coincides with r∗,N1, N1 with

α∗(1) = 1 exists without any additional conditions. For n = 1, y̆i1 = 1 − p1 ≥ 0 is feasible, and
N1, by part (b) of Lemma 17 exists if and only if z ≤ z1 (Y0 = 0). This inequality is 1 − c/β ≤
2
β

[

p1 − c−
√

(p1 − c)p1(1− β)
]

⇔
√

(p1 − c)p1(1− β) ≤ p1− β+c
2 ⇔ p21−p1(1+c)+ 1

4β (β+c)2 ≥ 0.

The smaller root of the corresponding equation is irrelevant since 1+c
2 is less than the p1−lower

bound in NA1: 1+c
2 < 1− ρ

2(β− c). This inequality holds for any ρ < 1 since the RHS is minimized
at ρ → 1 and 1 + c ≤ 2− β + c. Therefore, the additional condition of existence of N1 for n = 1 is
p1 ≥ (p1)2, where (p1)2 is the larger root of the equation, corresponding to the quadratic inequality

above, and (p1)2 = 1
2

[

1 + c+
√

(1 + c)2 − 1
β (β + c)2

]

. The expression under the square root is

1 + 2c+ c2 − β − 2c− c2/β = (1− β)
(

1− c2/β
)

.
N1 cannot exist with α∗(1) = 0 because the rationality of expectations would imply optimality

of y̆i1 (part (a) of Lemma 17). Under the conditions of the lemma, this means that r∗,N1 = r̃i1 is
dominated by r̆i1.

N2. The equilibrium profit in NA2 is not dominated by a possible deviation into PM with yi1 = y̆i1
because the prospective deviator’s profit coincides with the equilibrium one: r̆i1

∣

∣

vmin
0

=p1
= r∗,N2 =
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1
n(p1 − c)(1 − p1). The equilibrium profit is also not dominated by a possible deviation into PM

with yi1 = ỹi1 because, by Lemma 17, a non-trivial ỹi1 is optimal only if z ≤ z̃1 ≤ 2 (p1 − c/β) ,
which is incompatible with the condition p1 ≤ nc

n−1+β of the existence of NA2. Indeed, in this case,

Y0 =
n−1
n (1− p1) implying z = 1− Y0 − c/β = 1

n + n−1
n p1 − c/β. Inequality z ≤ 2 (p1 − c/β) yields

the following lower bound on p1 :

1

n
+

n− 1

n
p1 − c/β ≤ 2 (p1 − c/β) ⇔ n+ 1

n
p1 ≥ c/β +

1

n
⇔ p1 ≥

nc+ β

(n+ 1)β
,

which exceeds the upper bound given in NA2:

nc+ β

(n+ 1)β
>

nc

n− 1 + β
⇔ (nc+β)(n− 1+β) > nc(n+1)β ⇔ n2c(1−β)+n(β− c)−β(1−β) > 0.

The last inequality always holds because the LHS is increasing in n and positive for n = 1 :
c(1− β) + β − c− β(1− β) = (β − c)− (β − c)(1− β) = β(β − c) > 0.

N3 and N4. By part (c) of Lemma 17, both possible deviations into PM are trivial if and
only if z ≤ 0 ∧ z0

2 . Therefore, N3 and N4 exist under this condition, part of which, z = z0
2 ≤ 0,

corresponding to α∗(1) = 0, is included into the conditions of parts (3.1) and (4.1), and the
remaining part, corresponding to α∗(1) = 1, — into the conditions of parts (3.2) and (4.2).

By part (a) of Lemma 17, a pair of optimal deviator’s inventory y̆i1 with the corresponding
α∗(1) = 0 exists if and only if either p1 ≤ c/β and n−1

n Y ∗ < 1 − p1 (z > z0
2 ), or p1 > c/β and

z ≥ z1 ⇔ n−1
n Y ∗ ≤ 1 − c/β − z1. Inequality z ≥ z1 implies, by Lemma 17, z > z0

2 . In this case,
N3 and 4 exist if the corresponding equilibrium profit is not dominated by the profit of potential
deviator: r∗,N3 ≥ r̆i1 =

(

1− p1 − n−1
n Y ∗) (p1 − c) for N3 and r∗,N4 ≥ r̆i1 for N4. By Theorem 5,

Y ∗ = n−1
n

p1−s
c−s (1− v∗) and r∗,N4 = c−s

n(n−1)Y
∗; therefore inequality r̆i1 ≤ r∗,N4 becomes

1− p1 −
n− 1

n
Y ∗ ≤ c− s

n(n− 1)(p1 − c)
Y ∗ ⇔ (1− p1)

[

1 +
c− s

(n− 1)2(p1 − c)

]−1

≤ n− 1

n
Y ∗. (22)

The combination of the conditions p1 ≤ c
β (z0 ≤ 0) and n−1

n Y ∗ = 1 − p1 (z = z0
2 ), which is the

part of the condition z ≤ 0 ∧ z0
2 that corresponds to α∗(1) = 0, can be trivially included into the

conditions of parts (3.1) and (4.1) because r̆i1 = 0 in this case while r∗,N3 and r∗,N4 are strictly
positive.

When ᾱ(1) = 1, the conditions of the existence of N3 and N4 do not include the comparison of the
equilibrium profit with the profit of a deviator if both possible deviations into PM are trivial, which
is covered by the remaining conditions of part (c), Lemma 17. Namely, if z ≤ 0 (n−1

n Y ∗ ≥ 1 − c
β )

and z < z0
2 (n−1

n Y ∗ > 1− p1). The case p1 =
c
β and n−1

n Y ∗ = 1− c
β is included into parts (3.1) and

(4.1). Therefore, the remaining combination of the conditions, yielding the existence of N3 and 4
with trivial deviations into PM and ᾱ(1) = 1, is p1 ≤ c/β and n−1

n Y ∗ > 1 − p1 or p1 > c/β and
n−1
n Y ∗ ≥ 1− c/β.
Recall that p1 < 1 under the conditions of both NA3 and NA4. Therefore, by part (b.2) of

Lemma 17, the pair of positive optimal deviator’s inventory ỹi1 =
z
2 with profit r̃i1 =

β
4

(

1− c/β − n−1
n Y ∗)2

and ᾱ(1) = 1 exists if and only if p1 > c/β and 0 < z ≤ z̃1, where the last condition is equiva-
lent to 1 − c/β − z̃1 ≤ n−1

n Y ∗ < 1 − c/β. Then N3 and 4 exist if the corresponding equilibrium

profit is not dominated by the profit of the deviator: r∗,N3 ≥ r̃i1 = β
4 z

2, which can be written as

z ≤ 2
√

r∗,N3/β, and r∗,N4 ≥ r̃i1. The last inequality is c−s
n(n−1)Y

∗− β
4

(

1− c/β − n−1
n Y ∗)2 ≥ 0 or, in

terms of z, β4 z
2 − c−s

(n−1)2
(1− z − c/β) ≤ 0 ⇔ β

4 z
2 + c−s

(n−1)2
z − c−s

(n−1)2
(1− c/β) ≤ 0, which is strict

at z = 0. Therefore, the condition of N4 existence in this case is z ≤ ẑ2, where ẑ2 is the larger root
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of the corresponding equation, namely,

ẑ2 =
2

β

[

− c− s

(n− 1)2
+

√

(c− s)2

(n− 1)4
+

(c− s)(β − c)

(n− 1)2

]

=
2(c− s)

β(n− 1)2

[

√

1 +
(n− 1)2(β − c)

c− s
− 1

]

.

The combination of the inequalities z ≤ ẑ2 and z ≤ z̃1 yields 1− c/β − z̃1 ∧ 2
√

r∗,N3/β ≤ n−1
n Y ∗.

A.5.1. Analysis of additional conditions. The additional conditions of N-equilibria existence non-
trivially restrict the parameter regions corresponding to NA3 and NA4, i.e., the conditions may
hold or not hold depending on the market situation. For example, conditions of parts (3.1) and
(4.1) hold for ρ = 0. Indeed, the profit of a deviator from NA3 (Theorem 3) or NA4 (Theorem 5)
to no-PM with sales only in the first period is (p1−c)

(

1− v∗(∅, I)− n−1
n Y ∗) , which coincides with

r̆i1 in both parts if ρ = 0. Since equilibrium profits r∗,N3 and r∗,N4 are not dominated by deviator
profit, inequalities r∗,N3 ≥ r̆i1 and r∗,N4 ≥ r̆i1 hold under the corresponding NA if ρ = 0.

Combination of p1 ≤ c
β with n−1

n Y ∗ ≤ 1− p1 in parts (3.1) and (4.1) hold for p1 near the lower

bound for both NA3 and NA4 (which is below c
β for n > 1) since Y ∗, by continuity, approaches

1− p1. On the other hand, the following lemma illustrates that for large ρ and small n, inequality
r∗,N3 ≥ r̆i1 may not hold.

Lemma 18. For n = 1, c → 0, β → 1, and ρ =
(

1−√
1− β

)

/β → 1, conditions p1 > c
β and

n−1
n Y ∗ ≤ 1− c

β − z1 of part (3.1) of Proposition 16 hold, while r∗,N3 ≥ r̆i1 does not hold.

By parts (3.2) and (4.2), equilibria N3 and N4 exist under the combination of conditions p1 ≤ c
β

and n−1
n Y ∗ > 1− p1. The first condition implies p2 ≤ c, preventing deviation into PM with sales in

both periods, and the second one prevents any deviations with sales only in the first period. The
following lemma shows that this combination has a non-empty intersection with the input areas of
NA3 and NA4.

Lemma 19. Under NA3 or 4, there exist β < 1 and N > 1 such that the condition nc
β+n−1 ∨ 1 −

n−1
n Y ∗ < p1 ≤ c

β may hold for any n ≥ N.

When condition 1 − n−1
n Y ∗ < p1 ≤ c

β does not hold, the following lemma provides an example,

where inequality r∗,N3 ≥ r̃i1 of part (3.2) is satisfied.

Lemma 20. If p1 >
1+c
2 , n = 1, ρ = 0, and β = 1, inequalities p1 >

c
β , 1− c

β − z̃1 ≤ n−1
n Y ∗ < 1− c

β ,

and r∗,N3 ≥ r̃i1 of part (3.2) hold.

The opportunity to deviate into PM is stipulated by the combined inventory of other retailers,
i.e., Y −i = n−1

n Y ∗. Namely, if Y −i is such that, regardless of the inventory of retailer i, there are
sales in the second period, or these sales are such that p2 ≤ c, the corresponding non-trivial forms
of deviation into PM cannot exist. Combination of these conditions for Y −i with the necessary
conditions of existence of some NA-equilibria yield simple sufficient conditions of existence of N-
equilibria under the conditions of NA.

Lemma 21. If PM is available, N4 exists under the conditions of NA4 if n ≥ β−s
p1β−s ∨

β−s
c−s .

A.6. Proof of Proposition 8 (PM inventory is not greater than no-PM). Part (1) follows
directly from Theorem 1, and parts NA1 and NA2 of Theorem 3.

Part (2) follows from the facts that (a) under NA3, Y ∗ > n
n+1 (1− c/β) ∨ (1 − p1) (Theorem

3), where, by Theorem 1, n
n+1 (1− c/β) is the total equilibrium inventory under PM1 and 1 − p1

— under PM2; and (b) under N4, p2 = s, which is always less than p2 under N3. Therefore, by
formula (3) for p2, the total inventory under N4 is always greater than under N3, which, by the
argument above, is always greater than under PM1 or PM2.
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A.7. Proof of Proposition 7 (profits of PM1, PM2 and N(A)3, N(A)4). Part (1.1). The
RHS of inequality p1 > 1 − n

n+1(β − c) is the p1-boundary between N(A)3 and N(A)1 for ρ → 1.

Therefore, if this inequality holds under N(A)3 (p1 < 1), there exists ρN1 = n+1
n

1−p1
β−c ∈ (0, 1)

such that p1 = 1 − n
n+1ρ

N
1 (β − c) and, for the same given inputs except ρ, N(A) can be realized

as N(A)3 for ρ < ρN1 and as N(A)1 for ρ ≥ ρN1 . By Proposition 4 in Bazhanov et al. (2015),
profit r∗,N3 is decreasing in ρ for all p1 ≥ β − n

2(n+1)(β − c), and, by continuity of the profit

without PM, r∗,N3 = r∗,N1 at ρ = ρN1 . The last inequality is implied by p1 > 1 − n
n+1(β − c) if

1− n
n+1(β−c) ≥ β− n

2(n+1)(β−c), which is equivalent to 2(n+1)
n (1−β) ≥ β−c or c ≥ 3β−2

(

1 + 1−β
n

)

.

Hence, since r∗,N1 ≡ r∗,PM1, and r∗,PM1 is constant in ρ, we have, under the conditions of part
(1.1), that r∗,PM1 < r∗,N3 for any ρ < ρN1 . The lower bound on c above holds for any c and n if
β ≤ 2

3 and never holds for β > 4+c
5 . Indeed, the lower bound on c yields an upper bound on n,

which is less that one if β > 4+c
5 . The lower bound on p1 can be written as a lower bound on n:

n > 1−p1
β−c−(1−p1)

.

Part (1.2). By Theorems 1 and 5, inequality r∗,PM1 > r∗,N4 is equivalent to

n2(β − c)2

(n+ 1)2β
> (p1 − s)

(

1− p1 − ρs

1− ρβ

)

⇔ n

n+ 1
>

√

β(p1 − s)(1− p1 − ρ(β − s))

(β − c)2(1− ρβ)
=

1

w
,

where the expression under the root is always positive. The last inequality implies that r∗,PM1 >
r∗,N4 can hold only if w > 1 and holds for any n ≥ 2 if w > 3

2 . If w ∈ (1, 32 ], inequality
n

n+1 > 1
w ,

which is equivalent to r∗,PM1 > r∗,N4, can be written as w > 1 + 1
n or n > 1

w−1 . By Theorem 5,

fraction 1−p1−ρ(β−s)
1−ρβ is 1− v∗ > 0, where v∗ increases in ρ implying that w increases in ρ.

Part (2.1). By Proposition 10 in Bazhanov et al. (2015), nr∗,N3 decreases in n while nr∗,PM2 is
constant. Therefore, r∗,PM2 ≥ r∗,N3 for any n ≥ 1 and any other inputs that are in the area where
PM2 overlaps with N(A)3 for n = 1 if, in this area, r∗,PM2 ≥ r∗,N3 for n = 1. Indeed, for n = 1,
r∗,N3 coincides with the profit of the deviator to no-PM with sales in both periods, and, in the area
of PM2 existence, this profit does not exceed the equilibrium profit r∗,PM2. By the proof of part

PM2 of Theorem 1 for n = 1, inequality r∗,PM2 ≥ r∗,N3 is equivalent to p1 ≤ c
β

(1−ρβ)2

1−2ρ+βρ2
= P21,

where P21 does not depend on n. Therefore, first, inequality r∗,PM2 ≥ r∗,N3 is strict for n = 1 and
p1 < P21; second, since nr∗,N3 is decreasing in n while nr∗,PM2 is constant, r∗,PM2 > r∗,N3 for
p1 ≤ P21 if n > 1; and third, the p1-bound of the overlap P21, which is relevant for c

β < CB2, does

not change with n. For c
β ≥ CB2, the p1-upper bound for N(A)3 is PN

1 and, for PM2, — P22. By

Proposition 4, PN
1 is the p1-bound of the overlap for n = 1 and c

β ≥ CB2 since PN
1 < P22 for n = 1

and c
β > CB1 = CB2 (PN

1 = P22 at c
β = CB2). P

N
1 is decreasing in n, resulting in shrinking of the

overlap. For n > 1, the overlap area shrinks also due to conditions (a), (b) of part NA3 of Theorem
3 and additional conditions (3.1) and (3.2) for N3 existence (Proposition 16). For n = 1, all these
conditions hold trivially.

The only bound that leads to the expansion of the overlap with n is p1-lower bound for N(A)3
PN
2 = nc

β+n−1 that separates N(A)3 from N(A)2. This bound decreases from c
β for n = 1 to c for

n → ∞. Recall that PM2 and N(A)2 exist only if β < 1. PN
2 is strictly less than c

β for any n > 1

while the upper p1−bounds for PM2, P21 and P22 are not less than c
β . Therefore, if p1 ≤ c

β , the

equality p1 = nc
β+n−1 yields n2 = p1(1−β)

p1−c such that, for the same given inputs except n, N(A) can

be realized as N(A)2 for all n ≤ n2 and as N(A)3 for all n > n2. Since profits are continuous under
N(A), i.e., r∗,N3 = r∗,N2 at n = n2, and, by Proposition 10 in Bazhanov et al. (2015), nr∗,N3 is
decreasing in n, while nr∗,N2 ≡ nr∗,PM2 is constant, we have r∗,PM2 > r∗,N3 for any n > n2, i.e., for
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p1 ∈
(

PN
2 , c/β

]

and any other inputs in the overlap of N(A)3 and PM2, inequality r∗,PM2 > r∗,N3

also holds.
Part (2.2) follows from the facts: (a) for N(A)4, v∗ is increasing in ρ, i.e., the total first-period

profit nr∗,N4 does not exceed nr∗,N4|ρ=0 = (p1 − c)(1 − p1) = nr∗,PM2, and (b) the second period
is always at loss under N(A)4 since s < c.

A.8. Proof of Proposition 9 (customer surplus with PM vs. no-PM).

Lemma 22. Under the conditions of the corresponding RESE, the total customer surplus is

(1) under PM1: ΣPM1 = (1−p1)2

2 + (1− p1)(p1 − p∗2) +
(βp1−p∗

2
)2

2β ;

(2) under PM2 and N(A)2: ΣPM2 = ΣN2 = (1−p1)2

2 ;

(3) under N(A)1: ΣN1 =
(β−p∗

2
)2

2β ;

(4) under N(A)3 and 4, Σ has the same form: Σ = (1−p1)2

2 − (v∗−p1)2

2 +
(βv∗−p∗

2)
2

2β , where

p∗,N4
2 = s < p∗,N3

2 and v∗,N4 ≥ v∗,N3, which is strict for any ρ ∈ (0, 1).

The value ∆ΣA,B , ΣA−ΣB below denotes the change in the total surplus that results from the
switch from equilibrium B to equilibrium A given the same inputs when both RESE are possible.

Consider ΣN1 as ΣN1 =
∫ βp1
p∗
2

(ṽ − p∗2)
dṽ
β +

∫ β
βp1

(ṽ − p∗2)
dṽ
β where the first integral is ΣPM1

2 . Then

∆ΣPM1,N1 = ΣPM1
1 −

∫ β

βp1

(ṽ−p∗2)
dṽ

β
=

∫ 1

p1

(v−p∗2)dv−
∫ 1

p1

(βv−p∗2)dv =

∫ 1

p1

v(1−β)dv =
(1− β)

2
(1−p21),

which is positive for any p1 < 1 and β < 1.
The result for ∆ΣPM1,PM2 follows directly from parts (1) and (2) of Lemma 22 after substitution

for p∗2 = p∗,PM1
2 = c+ β−c

n+1 leading to ∆ΣPM1,PM2 = (1−p1)(p1−c− β−c
n+1)+

1
2β (βp1−c− β−c

n+1)
2 > 0.

By Lemma 22, ∆ΣPM2,N1 = 1
2

[

(1− p1)
2 − 1

β (β − p∗2)
2
]

= 1
2

{

(1− p1)
2 − 1

β

[

n
n+1(β − c)

]2
}

,

because, by part NA1 of Theorem 3, β − p∗2 = (β − c) n
n+1 . Since ∆ΣPM2,N1 decreases in p1, it is

always negative if ∆ΣPM2,N1 < 0 at p1−lower bound, which, minimized at ρ → 1, by Theorem 3,

is pLB1 = 1− n
n+1(β − c). Indeed, ∆ΣPM2,N1|p1=pLB

1
= 1

2

[

n
n+1(β − c)

]2
(1− 1

β ) < 0 for any β < 1.

By Lemma 22, ∆ΣPM2,N3 = 1
2

[

(v∗ − p1)
2 − 1

β (βv
∗ − p∗2)

2
]

, where, by part NA3 of Theorem 3,

v∗ − p1 =
p1 − ρp∗2 − p1 + p1ρβ

1− ρβ
=

ρβ(p1 − 1 + Y ∗)
1− ρβ

and

βv∗ − p∗2 =
βp1 − βρp∗2 − p∗2 + p∗2ρβ

1− ρβ
=

β(p1 − 1 + Y ∗)
1− ρβ

,

yielding ∆ΣPM2,N3 = β
2

[

Y ∗,N3−(1−p1)
1−ρβ

]2
(ρ2β − 1) < 0.

The sign of ∆ΣPM2,N4 can be shown in the same way using p∗2 = s and v∗ = v∗,N4 = p1−ρs
1−ρβ .

Then v∗ − p1 =
ρ(p1β−s)
1−ρβ and βv∗ − s = p1β−s

1−ρβ , yielding ∆ΣPM2,N4 = 1
2β

(

p1β−s
1−ρβ

)2
(ρ2β − 1) < 0.

A.9. Proof of Lemma 10 ( p1-bounds are equivalent to ρ-bounds). By the proof of Theorem
1 for n = 1, the p1-bounds P11 and P21 separate PM1 and PM2 respectively from NA3. These

bounds can be written as bounds on ρ. Indeed, p1 ≥ P11 ⇔ 1−p1 ≤ ρ
2(β−c) ⇔ ρ ≥ ρPM1 = 2(1−p1)

β−c ,

and p1 ≤ P21 ⇔ p1
[

(1− ρβ)2 − (1− β)
]

≤ c(1 − ρβ)2 ⇔ (1 − ρβ)2 ≤ p1(1−β)
p1−c ⇔ ρ ≥ ρPM2 =

1
β

[

1−
√

p1(1−β)
p1−c

]

, where
√

p1(1−β)
p1−c < 1 under NA3 since p1β > c. Inequality ρPM2 ≤ 1 is equivalent
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to 1−
√

p1(1−β)
p1−c ≤ β, which holds as equality if β = 1. Consider β < 1. Then inequality ρPM2 ≤ 1

can be written as 1− β ≤ p1
p1−c or −c− β(p1 − c) ≤ 0, which is strict for any feasible c, p1, and β.

In the same way, ρPM2 > 0 is equivalent to p1(1− β) < p1 − c, which always holds.

A.10. Proof of Proposition 11 (benefit from PM, n = 1).

Lemma 23. For n = 1 and c
β < p1 < 1− ρ

2(β−c), NA3 exists and unique with v∗ = 2p1−ρc
2−ρβ , Y ∗ = 1−

βp1+c(1−ρβ)
β(2−ρβ) , p∗2 = c+βp1−c

2−ρβ , r∗,N3 = (p1−c)[2(1−p1)−ρ(β−c)]
2−ρβ + (βp1−c)2

β(2−ρβ)2
, Σ∗ = (1−p1)2

2 +1
2

(

βp1−c
2−ρβ

)2 (
1
β − ρ2

)

.

The proof of the Proposition follows from the properties of the boundaries between RESE,
established in Theorems 1, 3, Corollary 2, Proposition 16, and the fact that, for n = 1, a monopolist
is indifferent between two RESE at the boundary. For n = 1, the area where PM1 exists is inside
the area where NA1 exists because, by Proposition 4, PN

1 = P11 and PN
1 < P12.

Part (1.1). By part PM2 of Theorem 1, PM2 exists if c
β ≥ CB and p1 ≤ P2 (if p1 = P2, the form

of a realized RESE depends on the expectations: for α∗ = 1 it is PM1, for α∗ = 0 — PM2). By part
NA1 of Theorem 3, NA1 exists if p1 ≥ PN

1 . The benefit from PM is BPM2,NA1 = r∗,PM2−r∗,NA1 =

(p1 − c)(1 − p1) − (β−c)2

4β , which is increasing in c because ∂BPM2,NA1

∂c = −(1 − p1) +
1
2β (β − c) =

p1 − 1
2β (β + c) > 0. The last inequality holds since p1 ≥ PN

1 = 1 − ρ
2(β − c) under NA1, and

1
2β (β + c) < 1 + ρ

2(β + c) − ρβ ⇔ 1
2

(

1 + c
β

)

(1 − ρβ) < 1 − ρβ ⇔ β+c
2 < β holds for any

c < β. Then BPM2,NA1 ≥ 0 for any c if BPM2,NA1|c=0 ≥ 0, which is −p21 + p1 − β
4 ≥ 0. This

inequality holds between the roots (p1)1,2 = 1
2

[

1∓√
1− β

]

. Inequality p1 ≥ (p1)1 always holds

if (p1)1 ≤ PN
1 |c=0 = 1 − ρβ

2 , which is satisfied for any ρ < 1 since PN
1 |c=0 is decreasing in ρ and

(p1)1 ≤ PN
1 |c=0 holds for ρ = 1 : 1

2

[

1−√
1− β

]

≤ 1 − β
2 ⇔ β − √

1− β ≤ 1 (always holds).
Inequality p1 ≤ (p1)2 always holds if (p1)2 is not less than p1-upper bound for PM2, which, for
c = 0, is P2 because if 0 = c

β < CB (part 2.1 of Theorem 1), inequality p1 ≤ P21 = 0 never holds.

Equality P2|c=0 = 1
2

[

1 +
√
1− β

]

≡ (p1)2 implies BPM2,NA1|c=0 ≥ 0. Benefit BPM2,NA1 decreases

in β since ∂BPM2,NA1

∂β = − 1
4β2

[

2(β − c)β − (β − c)2
]

= −β2−c2

4β2 < 0.

Part (1.2). By Lemma 23, NA3 exists. By part PM2 of Theorem 1, PM2 exists either if c
β ≥ CB

(since p1 < PN
1 < P2) or

c
β < CB and p1 ≤ P21, which, by Lemma 10, is equivalent to ρ ≥ ρPM2.

The benefit from PM is BPM2,NA3 = r∗,PM2 − r∗,NA3 = (p1 − c)(1− p1)− (p1 − c)2(1−p1)−ρ(β−c)
2−ρβ −

(βp1−c)2

β(2−ρβ)2

=
1

2− ρβ

[

(p1 − c)ρ(βp1 − c)− (βp1 − c)2

β(2− ρβ)

]

=
βp1 − c

2− ρβ

[

(p1 − c)ρ− βp1 − c

β(2− ρβ)

]

=
βp1 − c

2− ρβ

[

c(1− 2ρβ + ρ2β2)− p1(β − 2ρβ + ρ2β2)
]

=
βp1 − c

2− ρβ

[

p1(1− β)− (1− ρβ)2(p1 − c)
]

,

which is increasing in ρ. Since βp1 − c > 0 under NA3 for n = 1, BPM2,NA3 > 0 if and only if

1− ρβ <
√

p1(1−β)
p1−c , which is, indeed, equivalent to ρ > 1

β

[

1−
√

p1(1−β)
p1−c

]

= ρPM2. By Lemmas 22,

and 23, ∆ΣPM2,NA3 = 1
2

(

βp1−c
2−ρβ

)2 (

ρ2 − 1
β

)

< 0.

Part (2). Since the profits in the pairs PM1 – N(A)1 and PM2 – N(A)2 are identical, retailer
is indifferent between these equilibria in the correspondent areas where (2.1) PM1 exists: c

β < CB

and p1 ≥ P11 ⇔ ρ ≥ ρPM1 or c
β ≥ CB and p1 ≥ P2; (2.2) N(A)2 exists: β < 1, any ρ and c

β , and

p1 ≤ c
β . Part (2.3) follows from the proof of part (1.2) since BPM2,NA3 = 0 at the boundary

between N3 and PM2 where ρ = ρPM2.
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Part (3). The remaining area with c
β < CB, p1 > c

β , p1 < P11 = PN
1 (ρ < ρPM1), and p1 > P21

(ρ < ρPM2) corresponds to inputs where only price-discriminating N(A)3 exists and PM-equilibria
do not exist because of a lower profit.

PM never leads to a gain from increased strategic behavior because (i) profit is constant in ρ
for both PM1 and PM2; (ii) profit is continuous at the boundaries between equilibria. Moreover,
N(A)3 is realized for any ρL < ρPM1∧ρPM2 and one of PM-equilibria (denote it as PM) is realized
for any ρH ≥ ρPM1 ∧ ρPM2. Therefore, since r∗,NA3 is decreasing in ρ for n = 1 (Bazhanov
et al. (2015)), inequality r∗,NA3|ρ=ρL > r∗,PM |ρ=ρH always holds yielding η(NA3,NA3,PM) =

(r∗,PM−r∗,NA3)|
ρ=ρH

r∗,NA3|
ρ=ρL

−r∗,NA3|
ρ=ρH

< 1.

A.11. Proof of Proposition 12 (gain from PM2). Assume that N(A)4 and PM2 exist for the
same inputs including ρH > 0, and N(A)4 exists for these inputs except ρL < ρH . The loss from
increased strategic behavior without PM is r∗,NA4|ρ=ρH − r∗,NA4|ρ=ρL < 0 and the performance of

PM2 is η(NA4,NA4,PM2) =
r∗,PM2−r∗,NA4|

ρ=ρH

r∗,NA4|
ρ=ρL

−r∗,NA4|
ρ=ρH

= 1 +
r∗,PM2−r∗,NA4|

ρ=ρL

r∗,NA4|
ρ=ρL

−r∗,NA4|
ρ=ρH

. Since r∗,NA4 is

decreasing in ρ, profit r∗,PM2 = 1
n(p1 − c)(1 − p1) does not depend on ρ, and, by Proposition 6,

1
n(p1 − c)(1 − p1) > r∗,NA4 for any inputs in the area of NA4 existence (implying that r∗,PM2 >

r∗,NA4|ρ=ρL), PM2 leads to a gain (η > 1). A lower bound of η in ρL is at ρL = 0 where the
denominator in the expression for η attains maximum. Then, the substitution of the expressions
for profits yields

η(NA4,NA4,PM2) ≥ 1+
(1− p1) [n(p1 − c)− (p1 − s)]

(p1 − s)(v∗,NA4 − p1)
= 1+

(1− ρHβ)(1− p1) [n(p1 − c)− (p1 − s)]

(p1 − s)ρH(p1β − s)
.

This measure is unbounded in n since nr∗,NA4 decreases in n to zero while nr∗,PM2 is constant.

A.12. Equilibria existence in Example 2 (gain from PM2). NA4 exists for both ρ = 0.5
and ρ = 0, and, when PM is available and used by retailers at ρ = 0.5, N4 exists for ρ = 0 and
PM2 — for ρ = 0.5. Indeed, by Theorem 5 for ρ = 0, v∗,N4 = p1 = 1

2 , Y
∗,N4 = 1

4
0.45
0.05 = 9

4 ,

and condition (a) of Theorem 5 holds: n−1
n Y ∗,N4 = 9

8 > 1 ≥ 1 − s
β > 1 − c

β . The last inequality

means that the additional condition (4.2) of Proposition 16 for the existence of N4 also holds since
p1 = 0.5 > c

β = 0.2. PM2, by Theorem 1, does not exist because, for ρ = 0, CB2 = 1 > c
β and

P21 =
c
β = 0.2 < 0.5 = p1. For ρ = 0.5, v∗,N4 = 1−0.05

2(3/4) = 1.9
3 , and Y ∗,N4 = 1

2
0.45
0.05

1.1
3 = 3.3

2 . Condition

(a) of Theorem 5 does not hold: n−1
n Y ∗,N4 = 3.3

4 = 0.825 < 1 − s
β = 0.9, but condition (b) holds:

n−1
n Y ∗,N4 β

c+βv∗−2s = 3.3
4·2·(0.1+1.9/6−0.1) = 9.9

7.6 > 1. PM2 exists since CB2 = 1−1+1/8

(1−1/4)2+ 1

2
·2· 1

8

= 2
11 <

c
β = 2

10 and P22 =
2(4.6−0.5+4

√
53/10)

17 > 8.2+8·0.7
17 > p1 = 0.5.

A.13. Proof of Proposition 13 (PM-profit exceeds NA3, p1 = β). The proof uses the
following lemma where p1-bounds between NA3, 2, and 1 are written as the bounds on c

β with

CBN1 , 1− n+1
nρβ (1− β) and CBN2 , 1− 1−β

n .

Lemma 24. If p1 = β, the forms of NA3 and NA4 simplify as follows:

NA3 (p∗2 > s): Y ∗ = [(1−c/β)(1−ρβ)+1−β]n
n+1−ρβ and r∗,NA3 = β(Y ∗/n)2; condition PN

2 < p1 < PN
1

is equivalent to c
β < CBN2 and either β < 1 for ρ = 0 or, for ρ > 0, c

β > CBN1; condition

(a) becomes n−1
n

β2(1−v∗)Y ∗

(c−s)(β−s) ≤ 1; and condition Y ∗ < 1− s
β becomes either c− s ≥ β(1− β)

or c− s < β(1− β) and n < (1−ρβ)(1−s/β)
(1−ρβ)(1−c/β)−β+s/β .
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NA4 (p∗2 = s): Y ∗ = n−1
n

β−s
c−s

(

1− β−ρs
1−ρβ

)

and r∗,NA4 = β−s
n2

(

1− β−ρs
1−ρβ

)

; condition (b) be-

comes β(n− 1)Y ∗ ≥ n(c+ βv∗ − 2s).

As to equilibria NA1 and NA2, both of them may exist and have overlaps with PM1 and PM2
for some feasible inputs when p1 = β. NA1 exists if and only if c

β ≤ CBN1 for ρ > 0 or β = 1 for

ρ = 0; and NA2 — if and only if c
β ≥ CBN2.

By Theorem 1 and Lemma 24, inequality r∗,PM1 > r∗,N3 is

(β − c)2

(n+ 1)2β
>

[β(1− β) + (β − c)(1− ρβ)]2

β(n+ 1− ρβ)2
⇔ n [(β − c)ρ− 1 + β] > 1− β, (23)

which holds for any n ≥ 1 if (β − c)ρ > 2(1− β) since, under this condition, it holds for n = 1 and
the LHS is increasing in n. On the other hand, (23) may hold only if [·] > 0, which is equivalent

to ρ > 1−β
β−c . Then, if ρ ∈

(

1−β
β−c , 2

1−β
β−c

]

, inequality r∗,PM1 > r∗,N3 is equivalent to n > 1−β
(β−c)ρ−1+β .

Condition β > 1+c
2 follows from inequality 1−β

β−c ≥ 1.

A.14. Equilibria existence in Examples 3-5. Example 3. Condition (a) of Theorem 5 holds:
Y ∗,NA4 = 208

105 and n−1
n Y ∗,NA4 = 416

315 > 1 > 1 − s
β , i.e., “salvaging” is forced on retailers and

N(A)4, indeed, exists with v∗ = 27
35 and the profit r∗,NA4 = 0.65

9 (1 − v∗) = 26
1575 = 0.0165. PM2

exists since c
β = 4

10 > 4
58 = CB2 and p1 < P22 = 0.93 with r∗,PM2 = 0.06. PM1 exists since

c
β = 4

10 > 4
100 = CB1 and p1 > P12 = 0.69, with the profit r∗,PM1 = 0.152

42·0.25 = 0.0056.

Example 4. Equilibrium profits in Figure 6 (b) are computed under the existence conditions
of the corresponding RESE types. In particular, for ρ = 0.2 and ρ = 0.65 the existence can be
demonstrated as follows. For ρ = 0.65, NA3 is realized in no PM game since, by Lemma 24,
Y ∗,NA3 = 0.89 < 1 = 1 − s

β , condition (b) of Theorem 3 holds: r∗,NA3 = 0.0247 > r̃i = 0.0188

(which can be shown using the expression for r̃i =
{

√

(p1 − s) (1− v∗)−
√

n−1
n Y ∗ (c− s)

}2

given

in Bazhanov et al. (2015)), and NA4 does not exist because the necessary condition Y ∗,NA4 > 1− s
β

does not hold: Y ∗,NA4 = 105
108 < 1. For ρ = 0.2, the only existing equilibrium is NA4 without PM or

N4 with PM. Indeed, 1− v∗,NA4 = 4
9 , Y

∗,NA4 = 3·5
4

4
9 = 5

3 and n−1
n Y ∗,NA4 = 5

4 > 1 = 1− s
β > 1− c

β ,

which means that condition (a) of Theorem 5 holds and additional condition (4.2) of Proposition 16
for existence of N4 holds (p1 >

c
β = 0.2). At the same time, NA3 does not exist since Y ∗,NA3|ρ=0.2 =

488
490 , condition (a) of part NA3 of Theorem 3 does not hold: n−1

n
β2(1−v∗)Y ∗

(c−s)(β−s) = 3·4.5
4

488
490 > 1, and

condition (b) does not hold: r∗,NA3 = 0.152 < r̃i = 0.158. PM-equilibria also do not exist for
ρ = 0.2. PM1: CB1 = 31

56 > 20
100 = c

β and P11 = 2.52
5 > p1; PM2: CB2 = 62

85 > 20
100 = c

β

and P21 = 8.1
31 < 15.5

31 = p1. When ρ = 0.65 and PM is available, PM1 exists since CB1 < 0

and P12 = 0.487 < p1. The PM performance is η(NA4,NA3,PM1) =
(r∗,PM1−r∗,NA3)|ρ=0.65

r∗,NA3|ρ=0.65−r∗,NA4|ρ=0.2
=

0.0128−0.0247
0.0247−0.0139 = 0.0119

0.0108 = −1.102.

Example 5. Condition (a) of Theorem 5 holds for both ρH = 0.4 and ρL = 0.3. PM1 exists
at ρH since CB1 = 304

1004 > 100
1300 = c

β and P11 = 0.398 < p1, and PM1 does not exist at ρL since

CB1 = 0.466 > c
β and P11 = 0.410 > p1.

Appendix B. Proofs of auxiliary statements

B.1. Proof of Lemma 14 (roots of equation r̆i = r̃i). Equation (5), i.e. p21− (x+c)p1+
β
4

(

x+

c
β

)2
= 0, originates from comparing the expressions r̆i = (p1 − c)(x − p1) and r̃i = β

4

(

x− c
β

)2
,
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and collecting the terms in the equation r̃i − r̆i = 0. The roots of (5) exist since the discriminant

D = (x+ c)2 − β
(

x+ c
β

)2 ≥ 0. Indeed,

D = x2(1− β) + c2
(

1− 1

β

)

= (1− β)
[

x2 − c2

β

]

≥ (1− β)
[ c2

β2
− c2

β

]

≥ 0.

1
2

(

x+ c
β

)

is between the roots with strict inequalities when x > c
β and β < 1 because substituting

p1 =
1
2

(

x+ c
β

)

into the LHS of (5) we obtain:

1

4

(

x+
c

β

)2
−
[

(

x+
c

β

)

+ c− c

β

]

1

2

(

x+
c

β

)

+
β

4

(

x+
c

β

)2

=
1

4

{

−
(

x+
c

β

)2
− 2c

β
(β − 1)

(

x+
c

β

)

+ β
(

x+
c

β

)2
}

=
1

4

(

x+
c

β

)

(β − 1)

[

x− c

β

]

≤ 0.

Inequality (p1)2(x) ≤ x follows from r̃i − r̆i
∣

∣

p1=x
≥ 0, which is strict unless x = c

β .

The larger root is increasing in x if x > c
β , which is evident from the implicit differentiation of

the equation with respect to x

[2p1 − (x+ c)]
∂p1
∂x

= p1 −
β

2

(

x+
c

β

)

,

since, for the larger root 2p1 > x + c and p1 − β
2

(

x + c
β

)

= p1 − 1
2(βx + c) ≥ p1 − 1

2(x + c) > 0

implying that ∂p1
∂x > 0.

B.2. Proof of Lemma 15 (PM BR). When all retailers use PM, the general expression for
retailer i profit, by (4), is

ri1 =

{

(p1 − c)yi1, if Y = Q,
(p2 − c)yi1, if Y > Q.

In this case, Q = Y ∧ (1− vmin
1 ), where, by (1), vmin

1 = p1. Therefore, Y = Q if Y ≤ 1− p1 (sales
only in the first period) and p2 is not defined. Otherwise (Y > 1−p1), there are second-period sales
and, by (3), p2 < p1. Thus, r

i
1 has a discontinuity at Y = Q. Moreover, the profit at Y = Q+ 0 is

strictly less than at Y = Q.
Consider two principal cases: (a’) the maximum-profit PM response without the second-period

sales (i.e., Y1 ≤ 1 − p1) is not dominated by any PM response with the second period sales (i.e.,
Y1 > 1 − p1), and (b’) the maximum-profit PM response with the second period sales is not
dominated by any PM response without the second period sales.

We start by describing the nontrivial BR candidates for the cases (a’) and (b’). The profit
ri1 = (p1 − c)yi1 in case (a’) is strictly increasing in yi1, implying that, if BR exists in this region,

retailer i sets yi1 to y̆i1 = 1−p1−Y −i
1 resulting in Y1 = 1−p1. The nontrivial BR of this form exists

if and only if y̆i1 > 0, i.e., 1− Y −i
1 > p1, and the corresponding profit r̆i1 = (p1 − c)(1− p1 − Y −i

1 ) is
not dominated by that of case (b’) or by the profit corresponding to the no-PM response.

The nontrivial responses for case (b’) are constrained by Y1 > 1 − p1 or, equivalently, yi1 >

1− p1−Y −i
1 , and yi1 > 0. The profit function in this case, ri1 = (p2− c)yi1 = [β(1−Y −i

1 − yi)− c]yi,
is strictly concave.

The profit-maximizing yi1 must satisfy the first-order condition
∂ri

1

∂yi
1

= β(1−Y −i
1 )− c− 2βyi1 = 0,

yielding ỹi1 ,
1
2(1− c

β − Y −i
1 ). The profit corresponding to ỹi1 is

r̃i1 =

{

β

[

1− Y −i
1 − 1

2

(

1− c

β
− Y −i

1

)]

− c

}

× 1

2

(

1− c

β
− Y −i

1

)

=
β

4

(

1− c

β
− Y −i

1

)2

.
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By feasibility constraints, this inventory level is a nontrivial BR candidate only if ỹi1 > 0 and

ỹi1 > 1− p1 − Y −i
1 . The first inequality is equivalent to 1− Y −i

1 > c
β . The second one is equivalent

to

1

2

(

1− c

β
− Y −i

1

)

> 1− p1 − Y −i
1 ⇔ p1 >

1

2

(

1− Y −i
1 +

c

β

)

, (p1)0.

If either of these conditions is violated, the profit function is strictly decreasing in the entire region
of case (b’). Thus, a nontrivial BR of this form exists if and only if 1 − Y −i

1 > c
β , p1 > (p1)0 and

r̃i1 is not dominated by the profit r̆i1 of case (a’) and the one corresponding to a no-PM response.
We now establish conditions when the maximum profit within case (a’) is not dominated by

the maximum profit within case (b’) and vice versa. In particular, when either c
β ≥ 1 − Y −i

1 or

p1 ≤ (p1)0, ỹ
i
1 is not within the feasible region of case (b’) and r̆i1 dominates the profit corresponding

to any response within case (b’) as long as y̆i1 is feasible and nontrivial, i.e., 1− Y −i
1 > p1.

If ỹi1 is feasible and nontrivial, i.e., 1− Y −i
1 > c

β and p1 > (p1)0, the response of case (a’) is not

dominated by that of case (b’) if and only if y̆i1 is feasible, nontrivial, and r̆i1 ≥ r̃i1. This inequality

is (p1 − c)(1− p1 − Y −i
1 ) ≥ β

4

(

1− c/β − Y −i
1

)2
, which is equivalent to

p21 − (1 + c− Y −i
1 )p1 +

β

4

(

1− Y −i
1 + c/β

)2
≤ 0. (24)

By Lemma 14, the roots (p1)1,2 of (5) exist with x = 1 − Y −i
1 ≥ c

β . Then (24) holds if and only if

(p1)1 ≤ p1 ≤ (p1)2. By Lemma 14, (p1)1 ≤ (p1)0 ≤ (p1)2 ≤ 1 − Y −i
1 where the last inequality is

strict unless 1− Y −i
1 = c

β .

Combining all situations where the maximum profit in case (a’) is strictly positive and not
dominated by responses in case (b’), we obtain the following conditions: 1 − Y −i

1 > p1 (i.e., y̆i1 is

feasible and nontrivial) and either (a’.1) c
β ≥ 1− Y −i

1 (i.e., ỹi1 ≤ 0 because the second-period sales

are always at p2 ≤ c) or (a’.2) c
β < 1 − Y −i

1 (i.e., ỹi1 > 0) and p1 ≤ (p1)0 (i.e., ỹi1 ≤ y̆i1 because

the profit function decreases for all yi1 > y̆i1) or (p1)0 < p1 ≤ (p1)2 (i.e., even though ỹi1 is feasible,

r̆i1 ≥ r̃i1). Since c
β < 1 − Y −i

1 implies (p1)0 ≤ (p1)2, the subcase (a’.2) can be compactly described

by the pair of conditions c
β < 1− Y −i

1 and p1 ≤ (p1)2.

Symmetrically, combining all situations where the maximum profit in case (b’) is strictly positive
and not dominated by responses in case (a’), we obtain the following conditions: 1 − Y −i

1 > c
β

(i.e., ỹi1 is nontrivial) and either (b’.1) 1 − Y −i
1 ≤ p1 (i.e., y̆i1 is infeasible or trivial) or (b’.2)

1 − Y −i
1 > p1 ≥ (p1)2. Indeed, for case (b’.1), there is no need to compare r̃i1 with r̆i1 and the

feasibility condition p1 > (p1)0 is implied by p1 ≥ 1 − Y −i
1 > c

β since, then, (p1)0 < 1 − Y −i
1 . For

case (b’.2), r̃i1 ≥ r̆i1 if and only if p1 ≥ (p1)2 or p1 ≤ (p1)1, but the feasibility condition p1 > (p1)0
cannot be satisfied together with p1 ≤ (p1)1 because (p1)1 ≤ (p1)0. On the other hand, p1 > (p1)0
is implied by p1 ≥ (p1)2 and 1− Y −i

1 > c/β (recall that the latter implies (p1)2 > (p1)0).
We now determine when the maximum profit of case (a’) is not dominated by responses without

PM, implying that Y1 is equivalent to Y −i
1 above. Recall that these responses correspond to

expectations ᾱ(0), p̄2(0). First, response that results in first-period sales only cannot lead to profits
higher than r̆i1 because the potential first-period demand under such response does not exceed the
first-period demand under PM. Second, a response with sales only in the second period results in
all stock sold at p2 and profit no higher than r̃i1 ≤ r̆i1. The third remaining case is a response with
sales in both periods characterized by vmin

0 = vmin
0 (ᾱ(0), p̄2(0)) < 1 − Y1 and yi0 > 1 − Y1 − vmin

0 .
The profit in this case is concave quadratic of the form

ri0 = (p1 − c)(1− Y1 − vmin
0 ) + (β(1− Y1 − yi0)− c)(yi0 − [1− Y1 − vmin

0 ])
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with
∂ri

0

∂yi
0

= −2βyi0+β[1−Y1− vmin
0 ]+β(1−Y1)− c, the unique solution to the first-order condition

ỹi0 = 1− Y1 − 1
2(v

min
0 + c/β), yielding total inventory ỹi0 + Y1 = 1− 1

2(v
min
0 + c/β) < 1− s/β (since

c > s and vmin
0 ≥ p1 >

s
β ) and profit

r̃i0 = (p1 − c)(1− Y1 − vmin
0 ) +

β

4
(vmin

0 − c/β)2. (25)

If vmin
0 ≤ c/β, then ỹi0 ≤ 1 − Y1 − vmin

0 and ri0 is decreasing for all yi0 ≥ 1 − Y1 − vmin
0 . Thus,

the profit-maximizing level of inventory without PM is y̆i0 = 1− Y1 − vmin
0 that results only in the

first-period sales. In this case, we have already established that no-PM response does not dominate
r̆i1.

If vmin
0 > c/β, we need to check when r̆i1 = (p1 − c)(1 − p1 − Y1) ≥ r̃i0 which is equivalent to

inequality (p1− c)(vmin
0 −p1) ≥ β

4 (v
min
0 − c/β)2 and, in turn, (6). The corresponding equation is (5)

with x = vmin
0 , and, by Lemma 14, its roots exist for vmin

0 ≥ c/β. Moreover, relation vmin
0 < 1− Y1

implies that the larger root is less than (p1)2|x=1−Y −i
1

. Thus, when c/β < vmin
0 < 1− Y1, there is a

non-empty interval of p1 in which (6) holds and, for any p1 in this interval, p1 ≤ (p1)2 holds.
Summarizing all conditions where no-PM responses cannot dominate r̆i1 we obtain: either (i)

vmin
0 ≥ 1−Y1, or (ii) v

min
0 < 1−Y1 and vmin

0 ≤ c/β, or (iii) c/β < vmin
0 < 1−Y1 and (6). Combining

these conditions with those of case (a’), we obtain the conditions of case (a) in the lemma. Indeed,
in case (a’.1) c/β ≥ 1 − Y1 implies that either (i) or (ii) holds. In the complementary case (a’.2),
subcases vmin

0 ≥ 1−Y1 or vmin
0 ≤ c/β require only additional condition p1 ≤ (p1)2 (vmin

0 < 1−Y1 is
implied by vmin

0 ≤ c/β and c/β < 1−Y1. An additional useful observation is that since (p1)0 > c/β
in this case, we have (p1)2 > c/β. On the other hand, if c/β < vmin

0 < 1− Y1, condition p1 ≤ (p1)2
is superseded by a stronger condition (6).

We complete the proof by describing when the maximum profit of case (b’) is not dominated by
responses without PM. Two out of three possibilities are ruled out in a way almost identical to the
reasoning for the case (a’). First, response with the first-period sales only cannot lead to profits
higher than r̃i1 because the potential first-period demand under such response does not exceed the
first-period demand under PM while the latter would result in r̆i1 ≤ r̃i1. Second, a response with sales
only in the second period results in all stock sold at p2 and profit no higher than r̃i1. The remaining
case is a response with sales in both periods characterized by vmin

0 = vmin
0 (ᾱ(0), p̄2(0)) < 1−Y1 and

yi0 > 1− Y1 − vmin
0 .

Similarly to a comparison with r̆i1, no-PM response cannot dominate r̃i1 if either (i) vmin
0 ≥ 1−Y1

or (ii) vmin
0 < 1− Y1 and vmin

0 ≤ c/β. The condition vmin
0 < 1− Y1 in (ii) is always satisfied for (b’)

because 1 − Y1 > c/β. Examine c/β < vmin
0 < 1 − Y1. The PM BR with inventory level ỹi1 exists

in this case if and only if r̃i1 ≥ r̃i0:

β

4
(1− c/β − Y1)

2 ≥ (p1 − c)(1− Y1 − vmin
0 ) +

β

4
(vmin

0 − c/β)2 ⇔
β

4
(1− Y1 − vmin

0 )(1− 2c/β − Y1 + vmin
0 ) ≥ (p1 − c)(1− Y1 − vmin

0 ) ⇔
β

4
(1− 2c/β − Y1 + vmin

0 ) ≥ p1 − c ⇔ β

4
(1 + 2c/β − Y1 + vmin

0 ) ≥ p1

(recall that Y1 in r̃i0 and Y −i
1 in r̃i1 are equivalent here). The left-hand-side of the last inequality

does not exceed (p1)2 because β
4 (1 + 2c/β − Y1 + vmin

0 ) < β
4 [2(1 − Y1) + 2c/β] = β(p1)0 < (p1)2.

However, this implies that p1 < (p1)2 which is incompatible with case (b’) because it requires
p1 ≥ (p1)2. Thus, there is a no-PM BR that dominates r̃i1 when c

β < vmin
0 < 1− Y1. Combining (i)

and (ii) with conditions of case (b’), we get the statement of the lemma.
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B.3. Proof of Lemma 17 (deviation from no-PM RESE into PM). The form of ri1 follows
from general formula (4) and the expressions for the first-period sales given in §2.2 with Y1 = yi1.
There are two cases: (1) 1 − yi1 ≥ vmin

0 with Q1 = yi1 (PM-retailer i has no sales in the second
period) and Q0 = (1− yi1 − vmin

0 ) ∧ Y0, and (2) 1− yi1 < vmin
0 with Q1 = (1− p1) ∧ yi1 and Q0 = 0.

(1.1) If 1 − yi1 − vmin
0 ≥ Y0, then Q0 = Y0 implying Q = Y (sales in the first period only) with

ri1 = (p1 − c)yi1.
(1.2) If 1 − yi1 − vmin

0 < Y0, which is possible only if Y0 > 0, we have Q0 = 1 − yi1 − vmin
0 and

Y > 1− vmin
0 = Q. This subcase implies sales in the second period with p2 = s∨ [β(1− Y )] , which

exceeds p1 if β(1 − Y ) ≥ p1 ⇔ yi1 ≤ 1 − Y0 − p1/β. This inequality may hold for a non-trivial yi1
only if Y0 < 1− p1/β, which, in turn, is possible in this subcase if vmin

0 > p1/β. Then ri1 is

ri1 =

{

(p1 − c)yi1, if yi1 ≤ 1− Y0 − p1/β,
(p2 − c)yi1, if yi1 > 1− Y0 − p1/β,

(26)

which is continuous in yi1 (since p2 = β(1− Y0 − yi1) = p1 at yi1 = y̌i1 , 1− Y0 − p1/β) and concave.
Since (p1 − c)yi1 increases in yi1, a profit maximizing retailer would not consider inventory levels
below y̌i1 implying p2 ≤ p1.

(2.1) If 1 − p1 ≥ yi1, then Q1 = yi1. If Y0 = 0, there are no sales in the second period and
ri1 = (p1 − c)yi1. If Y0 > 0, profit ri1 is the same as in (1.2).

(2.2) If 1 − p1 < yi1, then Q1 = 1 − p1, Q0 = 0, and there are sales in the second period with
ri1 = (p2 − c)yi1 and p2 < βp1.

Summarizing all cases, we can conclude that ri1 is defined by (26) if vmin
0 > p1

β and, otherwise,

by

ri1 =

{

(p1 − c)yi1, if yi1 ≤ 1− Y0 − vmin
0 ,

(p2 − c)yi1, if yi1 > 1− Y0 − vmin
0 .

If Y0 = 0 (retailer i is a monopolist), vmin
0 in the formula above for ri1 is substituted by p1 because

sales in the second period occur only when yi1 exceeds 1 − p1 (unlike the case of Y0 > 0 for which
the second period sales occur whenever yi1 is not less than 1− vmin

0 ).
Throughout the proof, we use the following notation:

y̆i1 , 1− Y0 − vmin
0 , r̆i1 , (p1 − c)y̆i1,

ỹi1 , (1− Y0 − c/β) /2 = z/2, r̃i1 , β(ỹi1)
2.

Quantity y̆i1 is the maximizer of (p1 − c)yi1 on the interval yi1 ≤ 1 − Y0 − vmin
0 , and ỹi1 is an

unconstrained maximizer of (p2 − c)yi1 = [β(1− Y0 − yi1)− c]yi1.
We can rule out any yi1 ≤ 1 − Y0 − p1 as a candidate for the optimal solution under rational

expectations leading to vmin
0 > p1 (which may take place only if ρ > 0 and Y0 > 0). Indeed, for

such yi1, we have 1 − Y ≥ p1, resulting in p2 ≥ βp1 and rational vmin
0 =

(

p1 ∧ p1−ρp2
1−ρβ

)

∨ 1 = p1, a

contradiction. On the other hand, any yi1 > 1− Y0 − p1 would result in p2 < βp1.
Hence, under rational expectations, an optimal inventory level of retailer i that deviates into PM

may lead to the following three principal cases:
(a) Retailer i has positive inventory but sales occur only in the first period and ᾱ(1) = 0, leading

to vmin
0 (ᾱ(1), p̄2(1)) = p1. The inventory and profit are yi1 = y̆i1|ᾱ=0 = 1 − Y0 − p1 = z − z0

2 and

ri1 = r̆i1|ᾱ=0 = (p1 − c)y̆i1|ᾱ=0. This inventory level can be a candidate for optimum only if it is
positive, i.e., Y0 < 1−p1 or z > z0

2 . Since y̆
i
1|ᾱ=0 ≥ y̆i1|ᾱ=1∨y̌i1, the necessary and sufficient conditions

for y̆i1 to be the maximizer, include z > z0
2 and either y̆i1|ᾱ=0 ≥ ỹi1 (i.e., z − z0

2 ≥ z
2 ⇔ z ≥ z0) or

y̆i1|ᾱ=0 < ỹi1 (i.e., z < z0) and r̆i1|ᾱ=0 ≥ r̃i1.
(b) Retailer i has positive inventory while sales occur in both periods, ᾱ(1) = 1, and any

vmin
0 (ᾱ(1), p̄2(1)) from the interval [p1, 1] is plausible a priori. Since, under rational expectations,
p2 < βp1 ≤ p1, case (b) involves reimbursements and the general expression for the profit of
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retailer i is ri1 = (p2 − c)yi1 regardless of the specific value of vmin
0 . The maximum must be internal,

can only be at ỹi1, and the corresponding profit is r̃i1. Rationality of expectations requires that
ỹi1 > 1 − Y0 − p1, which implies p2 < βp1, and can be written either as p1 > c

β + z
2 , or z >

2(1 − Y0 − p1) = 2z − 2(p1 − c
β ), or z < z0. Since vmin

0 ≥ p1 and p1 ≤ p1/β, inequality z < z0

implies that ỹi1 does belong to the range of inventory levels where the profit function has the form
ri1 = (p2 − c)yi1, i.e., ỹ

i
1 > y̆i1|ᾱ=1 = 1 − vmin

0 − Y0 and ỹi1 > y̌i1. Thus, the inventory ỹi1 is the
maximizer under rational expectations if and only if

• (feasibility) ỹi1 > 0 or, equivalently, Y0 < 1− c/β ⇔ z > 0;
• (rationality) z < z0; and
• (optimality) either y̆i1|ᾱ=1 ≤ (y̌i1)

+ (i.e., profit function is continuous and concave, and there
is no need to compare profits), or y̆i1|ᾱ=1 > (y̌i1)

+ (profit is discontinuous at y̆i1|ᾱ=1) and
r̃i1 ≥ r̆i1|ᾱ=1 = y̆i1|ᾱ=1(p1 − c).

(c) PM retailer i chooses to exit the market by setting yi1 = 0 if and only if neither y̆i1|ᾱ=0 > 0
nor ỹi1 > 0 can be a candidate for the optimal solution. This outcome is possible if and only if
z ≤ z0

2 (Y0 ≥ 1− p1 — positive y̆i1|ᾱ=0 with sales only in the first period is impossible) and either

z ≤ 0 (Y0 ≥ 1 − c/β), or z ≥ z0, or both (if p1 ≤ c/β) hold — positive ỹi1 is impossible under
rational expectations. For z0

2 > 0, z0 ≤ z ≤ z0
2 cannot hold, and only z ≤ 0 is compatible with

a weaker condition z ≤ z0
2 . For z0

2 ≤ 0, at least one of z ≤ 0 or z ≥ z0 holds for any z ≤ z0
2 . A

combination of these two cases yields the condition of part (c). Any z < z0
2 results in the second

period sales and rational expectations ᾱ = 1. If z = z0
2 , sales take place in the first period only

with ᾱ = 0. For Y0 = 0, yi1 = 0 is never optimal since Y0 ≥ 1 − p1 may hold only for p1 = 1 and
then ỹi1 =

1
2 (1− c/β) > 0 satisfies z < z0, which becomes 1− c/β > 0.

It remains to show the equivalence of the above necessary and sufficient conditions in parts (a)
and (b) to the corresponding conditions in the statement of the lemma.

Part (a.1) If z0 ≤ 0 (i.e., p1 ≤ c/β), then z > z0
2 implies z ≥ z0 and there is no need to compare

profits.
Part (a.2). If z0 > 0 (i.e., p1 > c/β), it is still possible that z ≥ z0 and there is no need

to compare profits. Consider z0
2 < z < z0, where the profits need to compared. In this case,

y̆i1|ᾱ=0 is not less profitable than ỹi1 if and only if r̆i1|ᾱ=0 ≥ r̃i1, which is a quadratic inequality

in z : β
4 z

2 − z(p1 − c) + z0
2 (p1 − c) ≤ 0 with the discriminant (p1 − c)2 − β (p1 − c/β) (p1 − c) =

(p1 − c)p1(1 − β) ≥ 0 (strict inequality if β < 1), and the roots of the corresponding equation

z1,2 = 2
β

[

p1 − c∓
√

(p1 − c)p1(1− β)
]

, implying that r̆i1|ᾱ=0 ≥ r̃i1 is equivalent to z1 ≤ z ≤ z2.

The roots and z0 are such that z0
2 < z1 ≤ z0 ≤ z2. Indeed, the LHS of the quadratic inequality in

z is β
4 z

2
0 > 0 at z = z0

2 and non-positive at z = z0 :

β(p1 − c/β)2 − 2(p1 − c/β)(p1 − c) + (p1 − c/β)(p1 − c) ≤ 0 ⇔ p1β − c ≤ p1 − c,

which always holds. Hence, since in case (a) the comparison of r̆i1|ᾱ=0 with r̃i1 is relevant only in
the range z0

2 < z ≤ z0, we can conclude that r̆i1|ᾱ=0 ≥ r̃i1 if z ≥ z1. This inequality includes as a

particular case the condition z ≥ z0 for p1 > c/β, when y̆i1|ᾱ=0 is optimal without comparing the
profits.

Part (b), possible values of vmin
0 . As shown above, feasibility of ỹi1 and rationality of expectations

require z be in the range 0 < z < z0. It remains to specify the conditions of optimality of ỹi1.
These conditions depend on y̆i1|ᾱ=1 = 1 − Y0 − vmin

0 , which equals 1 − p1 if Y0 = 0. In this case,
y̆i1|ᾱ=1 = y̆i1|ᾱ=0 and, by part (a), the condition of optimality is z ≤ z1.

Consider Y0 > 0. Denote V (z) , p1−ρc−ρβz/2
1−ρβ . Then, in part (b),

vmin
0 = p1 ∨

(

p1 − ρβ(1− Y0 − z/2)

1− ρβ
∧ 1

)

= p1 ∨ [V (z) ∧ 1] . (27)
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Given 0 < z < z0, the possible values of vmin
0 include the following subcases.

vmin
0 = p1 if p1 − ρc − ρβz/2 ≤ p1 − ρβp1 ⇔ ρβp1 − ρc ≤ ρβz/2, which holds either if ρ = 0

or ρ > 0 and ρβ (p1 − c/β) ≤ ρβz/2. The last inequality contradicts z < z0, therefore vmin
0 = p1

may hold only if ρ = 0. Thus, for ρ = 0, y̆i1|ᾱ=1 = y̆i1|ᾱ=0, and, again, by part (a), the condition of
optimality is z ≤ z1.

Consider ρ > 0. Then vmin
0 > p1 if p1 < 1 and vmin

0 = 1 if and only if either p1 = 1 or p1 < 1 and

p1 − ρc− ρβz/2 ≥ 1− ρβ ⇔ z ≤ 2(p1 − ρc+ ρβ − 1)/(ρβ). (28)

In this case, y̆i1|ᾱ=1 = −Y0 < 0.
Part (b), condition z ≤ z̃1 ( r̆i1|ᾱ=1 ≤ r̃i1). Recall that in the range 0 < z < z0, inventory ỹi1 is

optimal if and only if (I) there is no need to compare profits (y̆i1|ᾱ=1 ≤ (y̌i1)
+), or (II) y̆i1|ᾱ=1 > (y̌i1)

+

and r̆i1|ᾱ=1 ≤ r̃i1.
(I). Consider y̌i1 ≤ 0. Condition y̆i1|ᾱ=1 ≤ 0 trivially holds for vmin

0 = p1 = 1.
For p1 < 1, condition y̆i1|ᾱ=1 ≤ 0 is equivalent to vmin

0 ≥ 1−Y0, or, in terms of z, vmin
0 − c/β ≥ z,

which, for V (z) ∈ (p1, 1], becomes

p1 − ρc− ρβz/2 ≥ (z + c/β)(1− ρβ) ⇔ z(1− ρβ + ρβ/2) ≤ p1 − c/β ⇔ z ≤ z0
2− ρβ

.

Combining the last inequality with (28), we obtain that inequality y̆i1|ᾱ=1 ≤ 0 is equivalent to
z ≤ 2

ρβ (p1 − ρc + ρβ − 1) ∨ z0
2−ρβ , where the RHS is the maximum from the two bounds because

z ≥ 2(p1 − ρc + ρβ − 1)/(ρβ) is equivalent to V (z) ∈ (p1, 1]. Both bounds are always strictly less
than z0. Indeed, 2− ρβ > 1, and

2[p1 − ρc+ ρβ − 1]/(ρβ) < z0 ⇔ p1 − ρc+ ρβ − 1 < ρβp1 − ρc ⇔ 1− ρβ > p1(1− ρβ),

which holds for any p1 < 1.
Consider y̌i1 > 0. Inequality y̆i1|ᾱ=1 ≤ y̌i1 is 1 − Y0 − vmin

0 ≤ 1 − Y0 − p1/β ⇔ p1/β ≤ vmin
0 ,

which, for ρ > 0, may hold only if p1 ≤ β. Under this condition, p1/β ≤ vmin
0 is equivalent to

p1(1− ρβ)/β ≤ p1 − ρc− ρβz/2 or z ≤ 2 (p1 − ρc+ ρp1 − p1/β) /(ρβ).
(II). This subcase contains two conditions: z ∈ (0, z0) ∩

{

z : y̆i1|ᾱ=1 > (y̌i1)
+
}

and r̆i1|ᾱ=1 ≤ r̃i1.

The last inequality, after the substitution of y̆i1|ᾱ=1 = z + c/β − vmin
0

= z +
c

β
− p1 − ρc− ρβz/2

1− ρβ
=

c

β
− p1 − ρc

1− ρβ
+

z

2

2− ρβ

1− ρβ

into r̆i1|ᾱ=1 = y̆i1|ᾱ=1(p1 − c), becomes
(

z
2
2−ρβ
1−ρβ + c/β−ρc−p1+ρc

1−ρβ

)

(p1 − c) ≤ β
4 z

2 or

z2 − 2z(p1 − c)(2− ρβ)

β(1− ρβ)
+

2z0(p1 − c)

β(1− ρβ)
≥ 0. (29)

The LHS of (29) for z = z0 is z0 {z0 − 2(p1 − c)/β} = 2z0 {βp1 − c− p1 + c} /β ≤ 0 with strict
inequality if β < 1, i.e., the roots z̃1 and z̃2 of the corresponding equation always exist and z̃1 ≤
z0 ≤ z̃2.

It is easy to show that z0
2−ρβ < z̃1. Indeed, the LHS of (29) with z = z0

2−ρβ becomes
(

z0
2−ρβ

)2
> 0.

The bound 2
ρβ [p1−ρc+ρβ−1] that corresponds to vmin

0 = 1 is also strictly below z̃1 because, by (27)

with z = z̃1, we have vmin
0 < 1. Otherwise, by (28) with z = z̃1, v

min
0 = 1 implying r̆i1|vmin

0
=1 < 0,

and equality r̆i1|vmin
0

=1 = r̃i1 cannot hold.

The bound 2
ρβ (p1 − ρc+ ρp1 − p1/β) , which results from p1/β ≤ vmin

0 , also does not exceed z̃1

since the LHS of inequality r̆i1|ᾱ=1 ≤ r̃i1, i.e.,
(

z + c/β − vmin
0

)

(p1 − c), is decreasing in vmin
0 , and
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the inequality holds for vmin
0 = p1/β. Indeed,

(

z +
c

β
− p1

β

)

(p1 − c) ≤ β

4
z2 ⇔ β

4
z2 − z(p1 − c) +

(p1 − c)2

β
≥ 0 ⇔

(

z
√
β

2
− p1 − c√

β

)2

≥ 0.

Hence, we have 0 < 2
ρβ [p1 − ρc + ρβ − 1] ∨ z0

2−ρβ ∨ 2
ρβ (p1 − ρc+ ρp1 − p1/β) < z̃1 ≤ z0 ≤ z̃2, and,

combining all the conditions in case (b) for ρ > 0 and Y0 > 0, ỹi1 is optimal if and only if z > 0 and
either p1 = 1 or p1 < 1 and z ≤ z̃1. Namely, for p1 < 1, a positive ỹi1 is optimal in the subrange
z ≤ z̄, where

z̄ =

{

2
ρβ [p1 − ρc+ ρβ − 1] ∨ z0

2−ρβ , if p1 > β,
2
ρβ [p1 − ρc+ ρβ − 1] ∨ z0

2−ρβ ∨ 2
ρβ (p1 − ρc+ ρp1 − p1/β) , if p1 ≤ β

because in this subrange a positive y̆i1|ᾱ=1 cannot be feasible and rational; and ỹi1 is optimal in the
subrange z ∈ (z̄, z̃1] because both positive ỹi1 and y̆i1|ᾱ=1 are feasible and rational, and r̆i1|ᾱ=1 ≤ r̃i1.

When positive ỹi1, y̆
i
1|ᾱ=0, and y̆i1|ᾱ=1 are feasible and rational, it can be shown that z1 ≤ z̃1 with

equality only if ᾱ = 0, Y0 = 0, or ρ = 0. Indeed, if we assume that z1 > z̃1 for ᾱ = 1, Y0 > 0,
and ρ > 0, then, for any z ∈ (z̃1, z1), we have r̆i1|ᾱ=1 > r̃i1 and, at the same time, r̆i1|ᾱ=0 < r̃i1,
contradicting the fact that r̆i1|ᾱ=1 is decreasing in vmin

0 . Therefore, ỹi1 is optimal for any z ∈ [z1, z̃1]
when ᾱ = 1, and y̆i1|ᾱ=0 is optimal for z ≥ z1 = z̃1 when ᾱ = 0.

The expression for z̃1 (for n > 1) is

z̃1 =
1

2

[

2(p1 − c)(2− ρβ)

β(1− ρβ)
−
√

4(p1 − c)2(2− ρβ)2

β2(1− ρβ)2
− 8z0(p1 − c)

β(1− ρβ)

]

=
(p1 − c)(2− ρβ)

β(1− ρβ)

[

1−
√

1− 2z0β(1− ρβ)

(p1 − c)(2− ρβ)2

]

.

For β = 1, this formula yields z̃1 = z1 = z0 = z2. Indeed, z̃1|β=1 = (2−ρ)(p1−c)
1−ρ

[

1−
√

1− 4(1−ρ)
(2−ρ)2

]

,

where the expression under the square root is ρ2/(2 − ρ)2 resulting in z̃1|β=1 = p1−c
1−ρ [2 − ρ − ρ] =

2(p1 − c) = z1|β=1 = z0|β=1 = z2|β=1. In the general case, z̃1|β=1 6= z̃2|β=1.
If p1 = c/β, then z̃1 = z1 = z0 = 0, where z̃1 = z1 = 0 since the free coefficient in both quadratic

equations for z1,2 and for z̃1,2 contains z0, which is zero in this case.
vmin
0 from part (b) is not decreasing in ρ since, if V (z) ∈ (p1, 1],

∂vmin
0

∂ρ
=

1

(1− ρβ)2
× {(−c− βz/2)(1− ρβ) + β(p1 − ρc− ρβz/2)} ,

where {·} = (c+ βz/2) (ρβ−1−ρβ)+βp1 = β (p1 − z/2− c/β) , which, as shown above, is positive
for vmin

0 ≥ p1. If V (z) ≥ 1, vmin
0 is constant in ρ and equals one.

B.4. Proof of Lemma 18 (condition of N3.1 does not hold). For n = 1, r̆i1 ≡ r∗,PM2

(Theorem 1) and r∗,N3 is equal to the profit of a deviator from PM2 into no-PM with sales in
both periods (see (25) with Y −i = 0 in the proof of Lemma 15). By Theorem 1, PM2 exists in
the area that intersects with the area of NA3 existence, which, for n = 1, requires p1 > c/β, and,
by part (2.2) of Theorem 1, PM2 exists for β → 1 − 0 and ρ = (1 − √

1− β)/β → 1, implying
CB2 = 0, and p1 ≤ P22, where P22 > c/β, yielding a non-empty range c/β < p1 ≤ P22, where

P22|n=1 = 1
2

[

1 + c+
√

(1− β) (1− c2/β)
]

(Corollary 2), which, for c → 0 and β → 1 goes to 1
2 .

For these inputs, inequality n−1
n Y ∗ ≤ 1 − c/β − z1 is z1 ≤ 1,which is equivalent to p1 ≤ P22 = 1

2 .

Indeed, z1 ≤ 1 ⇔ p1 − c−
√

(p1 − c)p1(1− β) ≤ β
2 ⇔ p1 ≤ 1

2 .
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At the same time, by Lemma 14 with x = vmin
0 > c/β, inequality r∗,PM2 ≥ r̃i0 may be strict for

β < 1, resulting, by continuity of r∗,N3 and r̆i1, in violation of r∗,N3 ≥ r̆i1 in the vicinity of the area
with β = ρ = 1and c = 0.

B.5. Proof of Lemma 19 (condition of N3.2 and N4.2 holds). Under NA3, by Theorem 3,
Y ∗ > 1 − p1 for any n ≥ 1, and, under NA4, Y ∗ ≥ 1 − s/β > 1 − p1 for any n > 1 since p2 = s
and p1 > s/β. Therefore, there exists N > 1 such that n−1

n Y ∗ > 1 − p for any n ≥ N. If β < 1
and n > 1, the lower bound for p1 in both NA3 and NA4, nc

β+n−1 , is strictly less than c/β and

approaches c with n → ∞. Hence, for β < 1 and n ≥ N, there exist a non-empty range for p1 such
that nc

β+n−1 ∨ 1− n−1
n Y ∗ < p1 ≤ c/β.

B.6. Proof of Lemma 20 (condition for profits of N3.2 holds). For n = 1, ρ = 0, and
β = 1, the NA3 p1−range is p1 ∈ (c, 1), hence the condition p1 > c/β holds and inequality
n−1
n Y ∗ ≥ 1− c/β− z̃1 becomes p1− c ≥ 1−c

2 or p1 ≥ 1+c
2 . Since, in this case, v∗ = p1, the inventory,

p∗2, and the profit are Y ∗ = 1
2(2−c−p1), p

∗
2 =

1
2(c+p1), r

∗,N3 = (p1−c)(1−p1)+(p∗2−c)[p1− 1
2(c+p1)].

Then inequality r∗,N3 ≥ r̃i1 takes the form

(p1 − c)(1− p1) +
1

4
(p1 − c)2 ≥ 1

4
(1− c)2 ⇔ 4(p1 − c)(1− p1) ≥ (1− p1)(1 + p1 − 2c)

or p1 ≥ 1+2c
3 , which holds for any p1 ≥ 1+c

2 since c < 1.

B.7. Proof of Lemma 21 (N4 existence, sufficient conditions). Lemma 17 provides neces-
sary conditions of existence of positive y̆i1 and ỹi1 in the form of upper bounds on Y0. Namely, Y0 <
1−p1 — for y̆i1, and Y0 < 1−c/β (z > 0) — for ỹi1. At the same time, by Theorem 5, Y ∗ > 1−s/β,
which is a lower bound: Y0 >

n−1
n (1− s/β) . Hence, a deviation from NA4 into one of the forms of

PM is impossible if both Y0-ranges are empty, i.e.,
(

1− 1
n

)

(1− s/β) ≥ (1− p1)∨ (1− c/β) , which

can be rewritten as 1
n (1− s/β) ≤ (p1 − s/β) ∧ c−s

β or n ≥ β−s
p1β−s ∨

β−s
c−s .

B.8. Proof of Lemma 22 (Total equilibrium customer surplus). The total surplus is Σ =

Σ1 +Σ2, where Σ1 =
∫ 1
v∗(v − p1)dv without PM and Σ1 =

∫ 1
p1
(v − p∗2)dv with PM. When there are

second-period sales, Σ2 =
∫ v∗

p∗
2
β

(βv − p∗2)dv =
∫ βv∗

p2
(ṽ − p∗2)

dṽ
β without PM and Σ2 =

∫ βp1
p2

(ṽ − p∗2)
dṽ
β

with PM. Straightforward integration specifies Σ as follows.

Part (1). ΣPM1
1 =

∫ 1
p1
(v−p∗2)dv =

(

v2/2− p∗2v
)∣

∣

1

p1
= 1

2 −p∗2−p21/2+p∗2p1+p1−p1+p21/2−p21/2

= (1 − 2p1 + p21)/2 + p1(1 − p1) − p∗2(1 − p1) = (1 − p1)
2/2 + (1 − p1)(p1 − p∗2), and ΣPM1

2 =
∫ βp1
p∗
2

(ṽ−p∗2)
dṽ
β =

(

ṽ2/2− p∗2ṽ
)

/β
∣

∣

βp1
p∗
2

=
[

β2p21/2− βp∗2p1 − (p∗2)
2 /2 + (p∗2)

2
]

/β = (βp1−p∗2)
2/(2β).

Part (2). Since v∗ = p1 under N2, Σ
PM2 = ΣN2 = ΣPM2

1 =
∫ 1
p1
(v−p1)dv = 1/2−p1−p21/2+p21 =

(1− p1)
2/2.

Part (3). Since v∗ = 1 under N1, ΣN1 = ΣN1
2 =

∫ β
p∗
2

(ṽ − p∗2)
dṽ
β = (β − p∗2)

2/(2β).

Part (4). Under N3 and 4, Σ1 =
∫ 1
v∗(v − p1)dv = 1

2 − p1 − (v∗)2 /2 + p1v
∗ + p21/2 − p21/2 =

(1 − p1)
2/2 − (v∗ − p1)

2/2, and Σ2 =
∫ βv∗

p∗
2

(ṽ − p∗2)
dṽ
β = (βv∗ − p∗2)

2/(2β). By construction of N3

and N4, inequality p∗,N4
2 = s < p∗,N3

2 always hold. In both N3 and N4, v∗ =
p1−ρp∗

2

1−ρβ , which is

decreasing in p∗2 except the case ρ = 0 when v∗,N3 = v∗,N4 = p1. Therefore, v
∗,N4 > v∗,N3 for any

ρ ∈ (0, 1).

B.9. Proof of Lemma 23 (NA3, n = 1). By part NA3 of Theorem 3 with n = 1, condition (a)

always holds, and the equation (21) in Y reduces to Y
[

Y − (β−c)(1−ρβ)+β(1−p1)
β(2−ρβ)

]

= 0 yielding Y ∗ =

(β−c)(1−ρβ)+β(1−p1)
β(2−ρβ) = 1−βp1+c(1−ρβ)

β(2−ρβ) , v∗ = 1
1−ρβ

[

p1 − ρβp1+c(1−ρβ)
2−ρβ

]

= 1
1−ρβ

2p1−p1ρβ−ρβp1−cρ(1−ρβ)
2−ρβ =
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2p1−ρc
2−ρβ , and p∗2 = β(1−Y ∗) = βp1+c(1−ρβ)

2−ρβ = c+ βp1−c
2−ρβ . Substitution into the formula for r∗,N3 results

in r∗,N3 = (p1− c)2(1−p1)−ρ(β−c)
2−ρβ + βp1−c

2−ρβ

(

2p1−ρc
2−ρβ − βp1+c(1−ρβ)

β(2−ρβ)

)

, where the bracket in the last term

is 2βp1−ρβc−βp1−c(1−ρβ)
β(2−ρβ) = βp1−c

β(2−ρβ) , leading to the expression in the lemma. The expression for Σ∗

results from direct substitution of v∗ and p∗2 into the general formula (Lemma 22).

B.10. Proof of Lemma 24 (NA3, NA4, p1 = β). NA3. The equation in Y with p1 = β yields

the expression for Y ∗. With this Y ∗ and p1 = β we have v∗ = β n+1−ρβ−ρ[1−ρβ−n(1−c/β)(1−ρβ)+nβ]
(1−ρβ)(n+1−ρβ) =

β 1−ρ+n[1+ρ(1−c/β)]
n+1−ρβ . Then r∗,N3 is

r∗,N3|p1=β =
1

n
[(β − c)(1− v∗) + (β(1− Y ∗)− c)(Y ∗ − 1 + v∗)] =

Y ∗

n
[β − c− β(Y ∗ − 1 + v∗)] ,

which after substitutions for Y ∗ and Y ∗ − 1 + v∗ = 1
n+1−ρβ {n (1− c/β)− (1− β)} becomes

r∗,N3|p1=β =
(1− c/β) (1− ρβ) + 1− β

(n+ 1− ρβ)2
{(β − c)(n+ 1− ρβ)− β [n (1− c/β)− (1− β)]} ,

where {·} = (1−ρβ)(β−c)+β(1−β), yielding the expression for r∗,N3|p1=β . Condition c/β < CBN2

results from the p1-lower bound p1 > nc
β+n−1 ; the upper bound is β < 1 for ρ = 0 and, for ρ > 0,

it can be written as c/β > 1 − n+1
nρβ (1 − β) = CBN1. Condition (a) is specified for p1 = β. Using

the expression for Y ∗, inequality Y ∗ < 1 − s/β is equivalent to n [(1− c/β) (1− ρβ)− β + s/β] <
(1 − ρβ) (1− s/β) , which always holds if [·] ≤ 0 or β2 − s − (β − c)(1 − ρβ) ≥ 0. Since the LHS
is increasing in ρ, this inequality holds for any ρ ≥ 0 if c − s ≥ β(1 − β). Otherwise, [·] > 0 and
Y ∗ < 1− s/β for any n < (1− ρβ) (1− s/β) / [·] .

NA4. The expressions for Y ∗, v∗, r∗,N4 and condition (a) follow directly from Theorem 5 with

p1 = β. Condition (b) is n−1
n

βY ∗

c+βv∗−2s ≥ 1, which, after substitution for Y ∗ and v∗, becomes

(c− s)
(

c− s+ β2−s
1−ρβ

)

≤
(

n−1
n

)2
β(β − s)

(

1− β−ρs
1−ρβ

)

.

The requirement in condition (c) that conditions (a) and (b) do not hold and the deviator profit
is strictly decreasing in the interval corresponding to p2 > s is equivalent, as shown in Bazhanov
et al. (2015), to the following: “there are no real roots of equation

2Y 3 −
(

2− v∗ − c/β +
n− 1

n
Y ∗

)

Y 2 + (1− p1/β) (1− v∗)
n− 1

n
Y ∗ = 0 (30)

in the interval (1−v∗, 1−s/β).” If p1 = β, the single root of (30) is Ỹ = 1
2

(

2− v∗ − c/β + n−1
n Y ∗) .

This root is not in the interval (1 − v∗, 1 − s/β) if and only if either Ỹ ≤ 1 − v∗, which, us-

ing n−1
n Y ∗ =

(

n−1
n

)2 β−s
c−s (1 − v∗), becomes 1 − c/β ≤ (1 − v∗)

[

1−
(

n−1
n

)2 β−s
c−s

]

, or Ỹ ≥ 1 −
s/β, which, in the same way, becomes 1 + c−2s

β ≤ (1 − v∗)
[

1 +
(

n−1
n

)2 β−s
c−s

]

. When Ỹ ∈ (1 −
v∗, 1 − s/β), NA4 exists if r∗,N4 ≥ r̃i =

(

Ỹ − n−1
n Y ∗

) [

β
(

2− v∗ − Ỹ
)

− c+ (p1−β)(1−v∗)

Ỹ

]
∣

∣

∣

p1=β
=

(

Ỹ − n−1
n Y ∗

) [

β(2− v∗ − Ỹ )− c
]

, where β(2 − v∗ − Ỹ ) − c = β
2

(

2− v∗ − c/β − n−1
n Y ∗) and

Ỹ − n−1
n Y ∗ = 1

2

(

2− v∗ − c/β − n−1
n Y ∗) = 1

2

[

(1− v∗)
(

1−
(

n−1
n

)2 β−s
c−s

)

+ 1− c/β
]

. These ex-

pressions yield r̃i = β
4

[

(1− v∗)
(

1−
(

n−1
n

)2 β−s
c−s

)

+ 1− c/β
]2
.
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